"Highlights from radioactive beam experiments using MINIBALL and REX-ISOLDE ."

Piet Van Duppen Instituut voor Kern- en Stralingsfysica, K.U.Leuven

for the MINIBALL, REX- and HIE-ISOLDE collaboration

Outline

- MINIBALL at REX-ISOLDE, CERN:
 - Radioactive beams at ISOLDE
 - Coulomb excitation and transfer reactions using MINIBALL
- Physics case and results:
 - General overview of MINIBALL campaigns (two examples: close to ¹⁰⁰Sn and to ¹³²Sn)
 - Nuclear structure along Z=28 from N=40 towards N=50 (Coulomb excitation: ⁶⁷⁻⁷³Cu isotopes, β-decay of ⁶⁷Fe-⁶⁷Co-⁶⁷Ni)
 - Evidence for intruder states and shape coexistence
- Conclusion and outlook
 - HIE-ISOLDE

KU Leuven

see also talks by V. Bildenstein, N. Bree, J. Van de Walle, D. Mücher

Bri

ISOLDE @ CERN

"Isotope Separation On Line and Post Acceleration" Lecture Notes on Physics 700 (2006) 37-77, Springer Verlag Berlin

Radioactive Beam Experiments at ISOLDE

• ISOLDE-CERN:

- beams of over 700 radioactive isotopes available at 60 keV
- physical and chemical properties to purify (e.g. laser ion source, molecular beams)
- Radioactive ion beam EXperiment at ISOLDE (REX ISOLDE):
 - an efficient concept for post-accelerating radioactive isotopes up to 3 MeV/u, essentially all existing ISOLDE beams
 - proposed in 1995, first experiments 2002
 - production of energetic isomeric beams (laser ionization)

The MINIBALL Germanium array:

- efficient, flexible Ge array for low-multiplicity experiments with weak RIB
- segmented Ge detectors in combination with segmented Si detector

REX ISOLDE performance

MINIBALL detector array

Outline

• MINIBALL at REX-ISOLDE, CERN:

- Radioactive beams at ISOLDE
- Coulomb excitation and transfer reactions using MINIBALL
- Physics case and results :
 - General overview of MINIBALL campaigns (two examples: close to ¹⁰⁰Sn and to ¹³²Sn)
 - Nuclear structure along Z=28 from N=40 towards N=50 (Coulomb excitation: ⁶⁷⁻⁷³Cu isotopes, β-decay of ⁶⁷Fe-⁶⁷Co-⁶⁷Ni)

Bri/

- Evidence for intruder states and shape coexistence
- Conclusion and outlook
 - HIE-ISOLDE

MINIBALL experiments at ISOLDE

- Coulomb excitation
- Neutron transfer reactions
- g-factor measurements
- Fusion evaporation studies

see also talks by V. Bildenstein, N. Bree, J. Van de Walle, D. Mücher

B(E2) systematics for Xe isotopes (T.U.München, Th. Kröll)

Sn isotopes (CERN/Lund, J. Cederkäll, A. Ekström)

Shell-model calculations including proton-neutron excitation across Z=N=50 needed

J. Cederkäll et al., PRL98 (2007) 172501

BriX

A. Ekström et al., to be published

Outline

- MINIBALL at REX-ISOLDE, CERN:
 - Radioactive beams at ISOLDE
 - Coulomb excitation and transfer reactions using MINIBALL
- Physics case and results:
 - General overview of MINIBALL campaigns (two examples: close to ¹⁰⁰Sn and to ¹³²Sn)
 - Nuclear structure along Z=28 from N=40 towards N=50 (Coulomb excitation: ⁶⁷⁻⁷³Cu isotopes, β-decay of ⁶⁷Fe-⁶⁷Co-⁶⁷Ni)
 - Evidence for intruder states and shape coexistence
- Conclusion and outlook
 - HIE-ISOLDE

The Z=28 and N=40,50 shell closures

J. Van Roosbroeck et al, PRC67 054307 (2005) - ISOLDE

B(E2: 2^+_1 - 0^+_1) systematics

- C. Mazzocchi et al, PLB 622 45 (2005) NSCL, MSU
- O. Perru *et al*, PRL **96** 232501 (2006) GANIL
- E. Padilla-Rodal et al, PRL70 024301 (2004) ORNL
- O. Sorlin et al, PRL 88, 2002

K.-H. Langanke et al, PRC 67, 2003

Structure of ⁶⁸Ni $\otimes v^{+/-1}$ or $\pi^{+/-1}$

Monopole interaction: Cu (Z=29)

67,69,71,73Cu systematics

BriX

^{67,69}Cu: B. Zeidman et al., PRC 18, 2122(1978): ^{A+1}Zn(d,³He)^ACu

⁷¹Cu: R. Grzywacz et al., PRL 81, 766 (1998).

K.U. Leuven

^{69,71,73}Cu: S. Franchoo et al., PRL 81, 3100(1998).

Coulomb excitation of ⁷³Cu

K.U. Leuven

Results: the 7/2⁻ states

Results: the 5/2⁻ states

K.U. Leuven

> at N=40 (69 Cu), the 5/2⁻¹ states undergo a significant loss in collectivity, are of different character

> the low B(E2; $5/2^-$ → $3/2^-$) value from N=40 onwards indicates that the $5/2^-$ state is essentially of single-particle character

Results: the 1/2⁻ states

➤ at N=40 (⁶⁹Cu), 5/2⁻ states undergoes a significant loss in collectivity, are of different character

> the low B(E2; $5/2^-$ → $3/2^-$) value from N=40 onwards indicates that the $5/2^-$ state is essentially of single-particle character

➤ the proposed 1/2⁻ shows an important increase in collectivity beyond N=40;

> onset of collectivity related to the filling of the g9/2 neutron state.

Energy systematics in the odd-mass Cu isotopes

Energy systematics in the odd-mass Cu isotopes

K.U. Leuven

shell-model calculations with a realistic interaction based on G-matrix with the monopole part modified by F. Nowacki.

Valence space consisted of pfg orbitals outside the ⁵⁶Ni core.

$$e_p = 1.5e, e_n = 0.5e.$$

J. Van Roosbroeck, - Phys. Rev. Lett. 92 (2004) 112501

- Purified isomeric beams:
 - Determine properties
 - Study decay characteristics
 - Coulomb excitation and transfer reactions

(after post-acceleration)

> 68m,gCu (2.86 MeV/u, 3 10⁵ pps, 74% pure) @ ¹²⁰Sn (2.3 mg/cm²)

Post-accelerated isomeric beams!

*B(E2;6⁻ \rightarrow 4⁻) in ⁷²Cu from T_{1/2, exp}(6-) R. Grywacz,- PRL81 (1998) 766

→ the poor agreement between the experiment and theory for 68,72 Cu pointing to the importance of proton excitations across the Z=28 shell gap;

I. Stefenescu et al., PRL98 (2007) 122701

Decay study of ⁶⁷Fe - ⁶⁷Co - ⁶⁷Ni

Decay study of ⁶⁷Fe - ⁶⁷Co - ⁶⁷Ni

$\beta - \gamma - \gamma$ correlations: single γ 's before (-200 – 0 ms) a β -694 keV (in ⁶⁷Co) trigger

Proton intruder state in ⁶⁷Co

Energy systematics of the neutron rich Co isotopes

K.U. Leuven

Outline

- MINIBALL at REX-ISOLDE, CERN:
 - Radioactive beams at ISOLDE
 - Coulomb excitation and transfer reactions using MINIBALL
- Physics case and results:
 - General overview of MINIBALL campaigns (two examples: close to ¹⁰⁰Sn and to ¹³²Sn)
 - Nuclear structure along Z=28 from N=40 towards N=50 (Coulomb excitation: ⁶⁷⁻⁷³Cu isotopes, β-decay of ⁶⁷Fe-⁶⁷Co-⁶⁷Ni)

Bri

- Evidence for intruder states and shape coexistence
- Conclusion and outlook
 - HIE-ISOLDE

- REX energy upgrade and increase of current capacity Energy upgrade in three stages: 5.5 MeV/u and 10 MeV/u and lower energy capacity REX trap and breeder upgrade
- ISOLDE proton driver beam intensity upgrade 2 to 6 μA (linac 4) Faster cycling of the booster New target stations for ISOLDE
- ISOLDE radioactive ion beam quality improvement
 - Smaller longitudinal and transverse emittance Higher charge state for selected users Better mass resolution

Target and ion source development e.g. RILIS

Already ongoing work

RFQ cooler UK, JYFL, Mainz.. (see talk K. Flanagan)

RILIS upgrade Sweden (Wallenberg)

REX extension Leuven, UK (Cockcroft Institute..),...

Expected yields from HIE-ISOLDE (CERN report 2007 – 008)

• Multi-step Coulex, transfer reactions, deep-inelastic reactions

BriX

• Construction of a dedicated recoil separator at ISOLDE

European Roadmap for Radioactive Ion Beam Facilities

P. Butler

Conclusion and outlook

• Good quality post accelerated beams from REX-ISOLDE combined with the MINIBALL segmented germanium array form a powerful tool for experiments on far unstable nuclei: Coulomb excitation, transfer reactions, isomeric beams

- Coulomb excitation on the neutron-rich Cu isotopes:
 - single particle character of the $5/2_{1}^{-1}$ states
 - onset of collectivity for the 1/2- states
 - observation of presumably $\pi f_{7/2}$ (2p-1h) intruder states in ^{71,73}Cu
- Beta-decay studies of ⁶⁷Fe to ⁶⁷Co:
 - low-lying (E=492 keV) isomeric 1/2⁻ proton intruder state (1p-2h) in ⁶⁷Co
- Challenge for theory to reproduce these findings: proton excitation through Z=28

The collaboration

J Van de Walle¹, I Stefanescu¹, P Mayet¹, O Ivanov¹, F Aksouh¹, D. Pauwels¹, J. Diriken¹, D Smirnov¹, JC Thomas¹, T. Cocolios¹, R Raabe¹, M Huyse¹, P Van Duppen¹, O Niedermaier², M Lauer², V Bildstein², H Scheit², D Schwalm², N Warr³, D Weisshaar³, J Eberth³, J. Jolie³, M Pantea⁴, G Schrieder⁴, O Kester⁵, F Ames⁵, T Sieber⁵, S Emhofer⁵, B Wolf⁵, R Lutter⁵, D Habs⁵, P Butler⁶, J Cederkall⁶, P Delahaye⁶, S Franchoo^{6,8}, V. Fedoseev⁶, G Georgiev⁶, Y Kojima⁶, U Köster⁶, T Nilsson⁶, F Wenander⁶, B. Marsh, J Iwanicki⁷, A Hurst⁷, F Azaiez⁸, F Ibrahim⁸, O Perru⁸, M Stanoiu⁸, O Sorlin⁸, D Verney⁹, Th Behrens¹⁰, Th Kröll¹⁰, R Krücken¹⁰, G Sletten¹¹, D. Balabanski¹², G. Lo Bianco¹², S. Harissopulos¹³ the MINIBALL collaboration and the REX-ISOLDE collaboration ¹ IKS KULeuven Belgium ² Max Planck Institut fur Kernphysik Heidelberg Germany ³ Institut fur Kernphysik Universitat Koln German ⁴ TU Darmstadt Germany CERN ⁵ LMU Munchen Germany ⁶ CERN Switserland ⁷ University of Liverpool Great Britain ⁸ IPN Orsay France ⁹ GANIL Caen France **REX-ISOLDE**(¹⁰ TU Munchen Germany ¹¹ Neils Bohr Institute Roskilde Denmark ¹² University of Camerino, Italy ¹³ NCSR Athens, Greece BriX

K.U. Leuven

Experimental method & setup: ²H(⁶⁶Ni,p)⁶⁷Ni

γ-ray detection:
8 MINIBALL triple clusters
24 6-fold segmented germanium crystals (ε ~ 8 %

• Particle detection (Si) forward barrel: $\Delta E 140 - E 1000 \ \mu m$ forward CD: DE 300 - E 1500 μm backward barrel: E 500 μm silicon backward CD: E 500 μm

• Beam composition: Bragg detector, Laser on/off

K.U. Leuven

Experiment vs. particle-core coupling model

A. M. Oros-Peusquens and P. Mantica, NPA 669 (2000) 81.

Levels in the odd-A Cu nuclei described as single-particle or holes states coupled to the quadrupole or octupole vibrations of the underlying even-even core.

Energies of the excited states in the n-rich ^{69,71,73}Cu very well reproduced by the model. B(E2) values not available.

BriX

- Population via Coulex (E2)
- Decay through faster M1 transition
- "Paar" parabola: E2 excitation over the parabola's maximum

Mechanism present in other odd-odd nuclei (e.g. ^{108,110}Ag)?
Energy is "released" and half life of the isotope is changed - interest for nucleosynthesis processes?

BriX

$$\mathbf{E}_{x}(\pi:\mathbf{1p}-\mathbf{2h}) = \left(\varepsilon_{j\pi} - \varepsilon'_{j'\pi}\right) - \Delta_{\text{pairing}} + \langle \mathbf{V}_{\pi\nu} \rangle$$

