

Coulomb excitation of 184,186,188Hg

Nick Bree & Andrew Petts

Katholieke Universiteit Leuven & University of Liverpool
P.A. Butler, J. Cederkäll, E. Clement, T.E. Cocolios, L.
Fraile, T. Grahn, M. Guttormsen, K. Hadynska, R.-D.
Herzberg, M. Huyse, D.G. Jenkins, R. Julin, S. Knapen, Th. Kroell, R. Krücken, A.C. Larsen, P. Marley, P.J.
Napiorkowski, J. Pakarinen, N. Patronis, P.J. Peura, E.
Piselli, M. Scheck, S. Siem, I. Stefanescu, J. Van de
Walle, P. Van Duppen, D. Voulot, F. Wenander and M.
Zielinska Coulex of 184,186,188Hg: Content

Content

- Motivation: shape coexistence
- Experimental set-up
- Shape measurements by Coulomb excitation
- Preliminary experimental results
- Conclusion and outlook

Coulex of 184,186,188Hg: Motivation

Z = 82	Pb182 55 ms 0+	Pb183 300 ms (1/2-)	Pb184 0.55 s 0+	Pb185 4.1 s	Pb186 4.79 s 0+	Pb187 18.3 s (13/2+)	Pb188 24.2 s 0+	Pb189 51 s	Pb190 1.2 m 0+	Pb191 1.33 m	Pb192 3.5 m 0+	Pb193 (3/2-)	Pb194 12.0 m 0+
	α	EC,a	α	α	α	ΕС,α	EC,α	EC,a	EC,α	ΕС,α	EC,α	EC	EC,α
	11101	3.1 s (7+)	(1/2+) *	111.04	11105 19.5 s (1/2+)	27.5 s (7+)	51 s (1/2+)	71 s (2-)	11109 2.3 m (1/2+)	2.6 m (2)-	(1/2+) *	9.6 m (2-)	21.6 m 1/2(+)
	Hg180 Z.8 s 0+	Hg181 3.6 s 1/2(-)	Hg182 10.83 : 0+	Hg1 3 9,4 1/2	Hg184 30.6 s 0+	Hg18 49 s 1/2-	Hg186 1.38 m 0+	EC 1g11/ 2.41 13/2	Hg188 3.25 m 0+	EC Hg189 7.6 m 3/2- *	Hg190 20.0 m 0+	Hg191 49 m (3/2-) *	Hg192 435 h 0+
	EC,α	α,ECp,	EC,α	α,ECp,	EC,a	EC,α	ΕС,α	2C,α	ΕС,α	EC,α	EC,α	EC	EC,α
	Au179 7.1 s	Au180 8.1 s	Au181 11.4 s 5/2-	Au182 21 5	Au183 42.0 s (5/2)-	Au184 53.0 s 3+	Au135 4.3 m 5/2-	Au186 10.7 m 3-	Au187 8.4 m 1/2+ *	Au188 8.84 m 1(-)	Au189 28.7 m 1/2+	Au190 42.8 m 1-	Au191 3.18 h 3/2+
	EC,α	EC,a	EC,α	EC,α	EC,a	EC,α	EC,α	EC	EC,α	EC	EC,α	EC,α	EC
	Pt178 21.1 s 0+	Pt179 21.2 s 1/2-	Pt180 52 s 0+	Pt181 51 5 1/2-	Pt182 2.6 m 0+	Pt183 6.5 m 1/2-	Pt184 17.3 m 0+	Pt185 70.9 m 9/2+	Pt186 2.0 h 0+	Pt187 2.35 h 3/2-	Pt188 10.2 d 0+	Pt189 10.87 h 3/2-	Pt190 6.5E11 y 0 ⁺
	EC,α	EC,a	EC,α	EC,α	EC,a	ΕC,α *	EC,α	EC,a	EC,α	EC	EC,α	EC	⁶⁶ 0.01

Coulex of 184,186,188Hg: Motivation

Coulex of ^{184,186,188}Hg: Motivation

Fig. 13. Schematic representation of the effect of configuration mixing on the binding energy, plotting the different contributions separately. On the left, it is assume that regular and intruder states seat far in energy. On the right, it is assume that the regular and intruder states cross.

 $E_{intruder}^{*}(4p-6h) = 4(\epsilon_{j\pi}-\epsilon_{j'\pi}) - \Delta E_{pair}^{\pi\pi} + \Delta E_{M}^{\pi\nu} - \Delta E_{Q}^{\pi\nu}$ K. Heyde et al, Nucl. Phys. A 466, 189 (1987)

Slightly oblate ground state band Prolate band

SHAPE COEXISTENCE

Coulex of ^{184,186,188}Hg: Experimental set-up

Coulex of ^{184,186,188}Hg: Experimental set-up

r	1	Ι	
Isotope	Charge state	Intensity@Miniball	
¹⁸⁴ Hg	43+	1000 pps	
¹⁸⁶ Hg	43+	2.0 x 10 ⁵ pps	
¹⁸⁸ Hg	44+	2.5 x 10⁵ pps	

All 3 isotopes were post-accelerated by REX to 2.85 MeV/u.

Coulex of ^{184,186,188}Hg: Experimental set-up

Coulex of ^{184,186,188}Hg: Shape measurements

In August 2007 a Coulomb excitation experiment was performed on the neutron deficient ^{184,186,188}Hg isotopes.

In August 2007 a Coulomb excitation experiment was performed on the neutron deficient ^{184,186,188}Hg isotopes.

In August 2007 a Coulomb excitation experiment was performed on the neutron deficient ^{184,186,188}Hg isotopes.

Conclusions:

The heavy ^{184,186,188}Hg were successfully produced and postaccelerated by REX-ISOLDE.

Apart from the first 2⁺ state, also other states have been populated.

The detected γ yields of the photo peaks can be used to extract:

- transitional matrix elements (B(E2) values)
- diagonal matrix elements (quadrupole moments)

This is done by the program GOSIA by fitting the matrix elements to produce the obtained γ yields by a χ^2 minimization. (T. Czosnyka et al, *GOSIA2*)

Outlook:

A proposal for a Coulomb excitation experiment on ^{180,182}Hg at REX-ISOLDE has been accepted.

A proposal for lifetime measurements in ^{184,186,188}Hg at Argonne National Laboratory has been submitted.

Other experiments aiming at studying this heavy mass region have been proposed (Ra and Rn).

Coulex of ⁶⁸Ni: Challenges and analysis improvements

<u>pexistence and <r2> in the Lec</u>

• Influence of intruder states on the $< r^2 >$ values in Pt and Hg isotopes

• Evidence for a deviation of the $< r^2 >$ values from the DM in Pb's around ¹⁹⁰⁻¹⁹⁴Pb

Coulex of 184,186,188Hg: Motivation

Coulex of 184,186,188Hg: Motivation

Coulex of ^{184,186,188}Hg: Motivation

¹⁸⁴Hg shell model: π 0p2h states

mean-field approximation: slightly oblate

J.L.Wood et al, Phys, Rep., 215, 3&4 (1992)

Coulex of 184,186,188Hg: Motivation

