Recoil beta tagging study of near proton drip-line nuclei in the A~70 region

- > Motivation
- Recoil beta tagging technique
- Results
- Future plans

The region of interest

100 3

A mper	8	114							
					76Y >200 NS	77Y 57 MS	78Y 50 MS	79¥ 14.8 S	80Y 30.1 S
Old				e P	e: 100.00% P	€: 100.00%	е: 100.00% Ф	е: 100.00% ср	
	• 2 	 p emission spontaneous fission predicted magic number 	73Sr >25 MS	74Sr >1.2 μS	75Sr 88 MS	76Sr 7.89 S	77Sr 9.0 S	78Sr 2.5 M	79Sr 2.25 M
neutron number		€: 100.00% €p > 0.00%	4	€: 100.00% €р: 5.20%	€: 100.00% €р: 0.34%	€ 100.00% €p < 0.25%	€: 100.00%	€ 100.00%	
		71Rb	72Rb <1.2 μS	73Rb >30 NS	74Rb 64.9 MS	75Rb 19.0 S	76Rb 36.5 S	77Rb 3.77 M	78Rb 17.66 M
		Р	Р	P > 0.00% €	€: 100.00%	€: 100.00%	€: 100.00% €d: 3.8E-7%	e: 100.00%	e: 100.00%
	69Kr 32 MS	70Kr 52 MS	71Kr 100 MS	72Kr 17.1 S	73Kr 27.3 S	74Kr 11.50 M	75Kr 4.29 M	76Kr 14.8 H	77Kr 74.4 M
	e: 100.00%	€: 100.00% €p≤ 1.30%	є: 100.00% єр: 5.20%	€: 100.00%	€: 100.00% €р: 0.25%	e: 100.00%	e: 100.00%	€: 100.00%	€ 100.00%
	68Br <1.2 μS	69Br <24 NS	70Br 79.1 MS	71Br 21.4 S	72Br 78.6 S	73Br 3.4 M	74Br 25.4 M	75Br 96.7 M	76Br 16.2 H
	Р	Р	e: 100.00%	e: 100.00%	€: 100.00%				

Astrophysical relevance

Influences rp-process nuclear abundances beyond Fe.

H. Schatz et al, EPJ A11, 257 (2001)

⁶⁸Se→ ⁶⁹Br→ ⁷⁰Kr, 2p capture Q-value 1.33 MeV Gamow peak 2.2 (1.1) MeV Low density of levels below 1 MeV

co-existing oblate and prolate structures

THE UNIVERSITY Q

LCN.

Shape co-existence & CED

Coulomb excitation Life time measurements **Electro-magnetic moments** Isomers, excited 0⁺ states etc.

[0.3.0] [-0.3, 0]

Neutron-proton pairing

Best candidates to study neutron-proton coupling from the relative location of T=0 and T=1 states in odd-odd nuclei, A.L. Goodman et al., PRC 60, 014311 (1999), 63, 044325(2001), Adv. Nucl. Phys. 11 (1979), p. 263

For the exotic nuclei, CED can be used to probe the mirror symmetry and the shape co-existence

Coulomb energy differences of isobaric analogue states probe various macroscopic and microscopic nuclear phenomena

D.D. Warner et al, nature physics 2, 311 (2006), S.M. Lenzi and M. A. Bentley, Prog. Part. Nucl. Phys. (2006)

Binding Energies, Pair transfer, Delays in Back Bending, Low lying level Structure lso-spin mixing

Standard Model

β decay strengths and the nuclear structure information (e.g., Iso-spin mixing) can be used to check unitarity of the CKM matrix and Conserved Vector Current hypothesis in the Standard model.

J.C. Hardy et al., PRL 94, 092502 (2005), PRC 77, 025501(2008)

Need high selectivity...

Conventional fusion evaporation studies become increasingly difficult as we go towards N=Z line for medium mass nuclei:

•Low proton separation energies
•Around the barrier, slow recoils
•Limited choice of reactions
•Low production cross sections

A clean identification becomes an absolute requirement to study these exotic nuclei

Recoil decay tagging

Sensitive tool for exotic nuclear studies with characteristic decays

Recoil decay tagging

¹⁰⁶Te is studied that was produced with 25nb in the presence of 1 barn total cross section

JUROGAM & RITU @ Jyväskylä

28.05.2008

Recoil- β -tagging using GREAT

We successfully pursued for the first time, A.N. Steer et al, NIM A 565, 630(2006).

28.05.2008

Proof-of-principle experiment

- ⁴⁰Ca (³⁶Ar, pn) ⁷⁴Rb
- $E_{beam} = 103 \text{ MeV}$
- $\tau_{\frac{1}{2}}(^{74}\text{Rb}) = 65 \text{ ms}$
- $\beta^+_{endpoint} \sim 10 \ MeV$
- $\sigma \sim 0.15 \text{ mb}$

D. Rudolph, *et al.*, PRL 76, 376 (1996) C. D. O'Leary, *et al.*, PRC 67, 021301(R) (2003)

B.S. Nara Singh

Reaction channels

The perfect test case

Nucleus	Channel	Half-life	Q (EC) (MeV)	O (mb)
⁷⁴ Rb	pn	65 ms	10.4	0.26
⁷⁴ Kr	2р	11 min	3.14	3.01
⁷⁴ Sr	2n	> 1.2 µs	-	0.014
⁷³ Kr	2pn	12 s	6.67	5.62
⁷³ Br	Зр	3.4 min	4.66	41.8
⁷² Kr	α	17.2 s	5.04	0.044
⁷² Br	3pn	78.6 s	8.7	0.439
⁷² Se	4p	8.4 d	0.355	6.28
⁷¹ Br	αρ	21.4 s	6.5	2.20

Identification of ⁷⁴Rb

⁷⁴Rb level scheme from RBT

A.N. Steer, Thesis, Univ of York, 2007

Only T=1, 0⁺ ground state and a T=0, 5⁺ state were known

C. Longour, et al., PRL81 1998

⁴⁰Ca (⁴⁰Ca, pn) ⁷⁸Y, $E_b = 118$, 121 MeV, $\sigma_T \sim 55$ mb, $\sigma(^{78}Y) \sim 5 \ \mu b \ \sim 90\%$ to T=0 5⁺ isomer, ~ 10 % to the rest

\rightarrow A large population trapped in the isomer makes the study of the ground state band difficult.

28.05.2008

B.S. Nara Singh

Coulomb Energy Differences

 $E_x(J, Z^{s})-E_x(J, Z^{s})$ is non-zero for isobaric analogue states of nuclei with same mass due to the effects coming from Coulomb force.

1/2

Extremely sensitive to nuclear structure effects: •Rotational alignment mechanism •Correlations of pairs of particles •Changes in deformation

•The evolution of nuclear raddii:

D.D. Warner et al., nature physics 2, 311 (2006) S.M. Lenzi and M. A. Bentley, Prog. Part. Nucl. Phys. (2006)

CED can be used to probe shape changes

THE UNIVERSITY

 $T_{7} = (N - Z)/2$

28.05.2008

-1/2

B S Nara Singh et al, PRC 75 061301(R) 2007

 $E_x(J, T=1, Z>)-E_x(J, T=1, Z<)$

Lighter mass region: T=1 Pairing, np, Z=N, T_z=0 vs pp, Z=N-2, T_z=1

74:T=1 pairing

78: Stable Prolate Shape and Reduced Pairing,

D. Rudolph et al, PRL 76, 376 (1996), Janecke et al PLB 605, 87 (2005)

70: Prolate Stretch (0.18 to 0.33) R. Sahu et al, JPG13, 603 (1987)

A=70 data from G. de Angelis, EPJ A12, 51 (2001) and D.G. Jenkins et al., PRC 65, 064307 (2002) + present work

28.05.2008

B.S. Nara Singh

Coulomb Energy Differences

Deformed liquid drop model :

Larsson et al, Phys. Scri. 8, 17 (1973)

 β_2 from -0.3 to 0.35 does not account for the effect.

T. Mylaeus et al., J. Phys. G 15, L135 (1989)

Stretch in β_2 from 0.18 to 0.33 accounts for the effect.

A.M. Hurst et al PRL 98, 072501 (2007)

Proton rich \rightarrow More number of protons \rightarrow Further reduction in CED

S.M. Lenzi and M. A. Bentley, Prog. Part. Nucl. Phys. 59 497 (2007)

A. Gadea et al., PRL97 (2006) 152501

Pairing Scenario

Shape changing Scenario

28.05.2008

Recent work does not support such a shape change and reports a strongly prolate 6⁺ to weakly oblate 4⁺ and 2⁺ states.

Different shapes for analogue nuclei?? Are they T=1 analogue states?? Need more refinement of Coulomb excitation results??

No excited 0⁺ states found in ^{68, 70}Se

Further work needs to be done.

THE UNIVERSITY of

28.05.2008

B.S. Nara Singh

Scintillator Test

0.7 mg/cm² ⁴⁰Ca + ³⁶Ar, ⁷⁴Rb

Planar Vs Plastic 3 to 4 MeV, 100 ms Residues in TOF gate = 11148783 Plastic Scintillator Detector Betas in 3 to 10 MeV gate = 20878 218 Counts/keV 528 Test showed 1.25 times more β detection efficiency 50 Residues in TOF gate = 134255956 Planar Ge Detector Efforts are ongoing further 40 Betas in 3 to 10 MeV gate = 189405 00 Counts/ke to increase the efficiency 304 . 88 10 0 0 200400600 800 1000 Energy (keV)

Calibration:

0.6 mg/cm² Ti + 36 Ar at E_{lab} = 103 MeV

⁸¹Sr, 2.73 MeV, 22m, ~ 77 mb,

⁸²Zr, 4.7 MeV, ~ 0.13 mb

28.05.2008

Search for breakdown of T=1/2 mirror symmetry: Recoil-β tagging and decay spectroscopy of ⁷¹Kr

Delicate interplay of nuclear forces may lead to Different ground states spin-parities.

P. Urkedal and I. Hamamoto, Phys. Rev. C58, (1998) R1889.

Unusually large β decay population of 30% to excited staes

J.W. Arrison *et al.*, Phys. Lett. B248, (1990) 39 M. Oinonen *et al.*, Phys. Rev. C56, (1997) 745

^{nat}Ca (³³S, 2n) ⁷¹Kr, $E_{beam} = 89$ MeV, , target ~ 1 mg/cm2 σ (⁷¹Kr) ~ 300nb, σ_T ~ 64 mb, $\tau^{1/2}$ (⁷¹Kr) = 100 ms, $\beta^{+}_{endpoint} = 8.9$ MeV, , σ (⁷⁰Br) ~ 1 μ b beam ~ 7 days

28.05.2008

⁷⁰Kr (52 ms, 9.7 MeV) and the bonus ⁷⁰Br (79.1 ms, 10.6 MeV), Just done (May 16th to 26th 2008)

- ⁶⁸Se→ ⁶⁹Br→ ⁷⁰Kr, 2p capture Q-value 1.33 MeV, Gamow peak 2.2(1.1) MeV
- **Moment of Inertia, Shape Co-existence and effect on IAS in** ⁷⁰Se
- Proton drip-line effects and further negative trend in CED
- **Exploration of Recoil beta beta tagging as** ⁷⁰Kr has a grand daughter ⁷⁰Se

Summary

- Recoil beta tagging was successfully pursued
- Very clean correlations identified levels in ⁷⁸Y
- Prolate stretch accounts for A ~ 70 CED
- In view of recent life-time measurements further work is suggested.
- Scintillator test with ⁷⁴Rb
- To place the γ rays in a proposed level scheme for ⁷¹Kr, further supporting data from the ^{nat}Ca (³²S, pn) ⁷⁰Br reaction will be required, which we just carried out during May08.

Recoil energy losses

Future and developments

- ⁶⁶As, 95.8 ms, 9.6 MeV
- $T_z = -1$
- ⁷⁴Sr,>1 μs,
- ⁷⁸Zr,>200ns,

Mass separators

Recoil beta and other particle combinations Improve beta detection efficiency Reduce recoil energy losses in the separator

Collaborators

A.N. Steer¹, D.G. Jenkins¹, R. Wadsworth¹, M.A. Bentley, P. Davies¹,
R. Glover¹, N.S. Pattabiraman¹, T. Grahn², P.T. Greenlees², P. Jones²,
R. Julin², M. Leino², M. Nyman², J. Pakarinen², P. Rahkila², C. Scholey²,
J. Sorri², J. Uusitalo², P.A. Butler³, M. Dimmock³, R. D. Herzberg³,
D.T. Joss³, R.D. Page³, J. Thomson³, R. Lemmon⁴, J. Simpson⁴, B. Blank⁵,
B. Cederwall⁶, B. Hadinia⁶, M. Sandzelius⁶

- 1. Department of Physics, University of York, Heslington, York YO10 5DD, UK
- 2. Department of Physics, University of Jyväskylä, P.O. Box 35, FIN-40351, Jyväskylä, Finland
- 3. Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, UK
- 4. CCLRC Daresbury Laboratory, Keswick Lane, Warrington WA4 4AD, UK
- 5. Centre d'Etudes Nuclèaires de Bordeaux-Gradignan, F-33175 Gradignan Cedex, France
- 6. Royal Institute of Technology, Roslagstullsbacken 21, S-106 91 Stockholm, Sweden.

66 As (95.8 ms $\,$ 9.6 MeV) and the bonus 66 Se (30 ms \sim 10 MeV) from 28 Si on 40 Ca,

- Only 2⁺ state is know with tentative assignment.
- Near zero trend ??, then needs a different explanation to ⁷⁸Y case
- A predicted 3⁺ micro-second shape isomer around 900 keV
- ⁶⁶Se from 2n channel with 50 times lower cross section, heaviest Tz=-1 nucleus and ⁶⁶Se/ ⁶⁶As/ ⁶⁶Ge isobaric triplet on which info will be known

Approved proposal

R. Grzywacz *et al.* Phys. Lett. B 429, 247 (1998), Nucl. Phys. A 682 41 (2001). M. Hasegawa *et al.*, Phys. Lett. B 617, 150 (2005).

 ${}^{40}\text{Ca}({}^{40}\text{Ca},\text{pn}){}^{78}\text{Y}$

Gated Singles

Gated Singles

B.S. Nara Singh

 ${}^{40}\text{Ca}({}^{40}\text{Ca},\,\text{pn}){}^{78}\text{Y}$

Gated 2d projections

B.S. Nara Singh

$$E_C = \frac{3e^2 Z(Z-1)}{5R_C} \qquad Z_> = Z_< +n, Z = Z_>$$

$$\Delta E_C = E_C(Z_{>}) - E_C(Z_{<})$$

$$\simeq \frac{3}{5} \frac{n(2Z - n)e^2}{R_C} - \frac{3}{5}(Z - n)^2 e^2 \frac{\Delta R_C}{R_C^2}$$

$$\Delta E_C(J) - \Delta E_C(0) = -\frac{3}{5}n(2Z - n)e^2 \frac{\Delta R(J)}{R_C^2}$$

S.M. Lenzi and M. A. Bentley, Prog. Part. Nucl. Phys. (2006)

B.S. Nara Singh

