#### Evidence for enhanced collectivity near N=Z=50

Rauno Julin on behalf of the KTH Stockholm group Mikael Sandzelius, Bo Cederwall, Arne Johnson et al.

> Gammapool Workshop Paris 28 May 2008



### Outline

- Recoil-Decay-Tagging (RDT) of heavy vs. light nuclei
- RDT study of <sup>106</sup>Te (Z = 52, N = 54)
- RDT study of <sup>110</sup>Xe (Z = 54, N = 56) and <sup>109</sup>I (Z = 53, Z = 56)
- Level systematics  $\rightarrow$  enhanced collectivity



### **RDT INSTRUMENTATION AT JYFL**



# Recoil – Decay – Tagging of Heavy Nuclei vs. Medium-Heavy and Light Nuclei



### Heavy nuclei - transfermiums

Produced in <u>asymmetric</u> cold-fusion reaction –  $X(^{48}Ca,2n)Y$  $\rightarrow$  ideal for RITU

- → Only <u>one reaction channel</u> open
- $\rightarrow$  Total compound cross-section down to 50 mb
- $\rightarrow$  I<sub>beam</sub> up to 30pnA on a 0.5mg/cm<sup>2</sup> target in in-beam runs

Fission dominates: 100000 : 1  $\rightarrow$  I<sub>beam</sub> limited by the Ge rate  $\rightarrow$  Very low focal-plane rate  $\rightarrow$  Enables long t<sub>1/2</sub> –  $\alpha$  – tagging



### Medium-heavy and light neutron-deficient nuclei

Produced in <u>symmetric</u> fusion-evaporation reactions  $\rightarrow$  Difficulties with a gas-filled separator

No fission – <u>large number of fusion ev. reaction channels</u>  $\rightarrow$  High recoil rate ~ 1kHz/1pnA on a 0.5mg/cm<sup>2</sup> target  $\rightarrow$  Keep the reaction cold !

 $\rightarrow$  Limited possibilities for short-t<sub>1/2</sub> p- or  $\alpha$ - or  $\beta$  tagging



### **Reminder:**

# In-beam gamma-ray experiment $\rightarrow$ 10 pnA on a 0,5 mg/cm<sup>2</sup> target

### 10 nanobarn $\rightarrow$ 4 reactions per hour !!



### RDT experiments for <sup>106</sup>Te, <sup>110</sup>Xe and <sup>109</sup>I

|                                                  |                                            |                                   |                                          | 3                                                                          |                                                                         | N=Z<br>56                                                                      | Ba<br>137,327<br>σ 1,3                                                                                          | Ba 114<br>0,43 s<br><sup>β+</sup>                                                              | Ba 115<br>0,45 s<br><sup>β+</sup><br><sup>βp</sup>                                                                                                                 | Ba 116<br>1,3 s<br><sup>β<sup>+</sup></sup><br><sup>βp</sup><br>g                                                    |
|--------------------------------------------------|--------------------------------------------|-----------------------------------|------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                                                  |                                            |                                   |                                          |                                                                            | 55                                                                      | N=56                                                                           | Cs 112<br>500 μs                                                                                                | Cs 113<br>17 μs<br>p 0,959                                                                     | Cs 114<br>0,57 s<br>β <sup>+</sup> ; α 3,239<br>γ 450; 698; 618<br>βp 1,7-7,0<br>βα 7,0-12,5                                                                       | Сз 115<br>1,4 s<br><sup>β+</sup><br><sub>βp</sub>                                                                    |
|                                                  |                                            |                                   |                                          | N=54                                                                       | Xe<br>131,29<br>σ 24                                                    | Xe 110<br>?                                                                    | Xe 111<br>0,9 s                                                                                                 | Xe 112<br>2,7 s<br><sup>β<sup>+</sup></sup> α 3,216                                            | Xe 113<br>2,8 s<br>β <sup>+</sup> ; α 2,985<br>γ 121; 689<br>βp 2-7<br>βα 7-10                                                                                     | Xe 114<br>10 s<br><sup>β+</sup><br>γ 309; 162;<br>104; 440                                                           |
|                                                  |                                            | 53                                | l<br>126,90447<br><sub>7 6,15</sub>      |                                                                            | I 108<br>36 ms<br>α 3,947                                               | Ι 109<br>100 μs<br>p 0,813                                                     | 1 110<br>0,65 s<br>3 <sup>+</sup><br>α 3,444<br>3p 2,5-6,0<br>3α 7-12                                           | I 111   2,5 s β <sup>+</sup> α 3,152 γ 341; 117;   321; 266 321; 266                           | $\begin{array}{c} 1 \ 112 \\ 3,42 \ s \\ \beta^{+}; \ \alpha 2,880 \\ \gamma \ 689; \ 787; \ 795; \\ 1143 \\ \beta^{2}, 20-6, 0 \\ \beta\alpha \ 6-12 \end{array}$ | $\begin{array}{c} 1 \ 113 \\ 5,9 \ s \\ \beta^+ \\ \alpha \ 2,610 \\ \gamma \ 463; \ 622; \\ 351; \ 567 \end{array}$ |
|                                                  |                                            | 52                                | Τe<br>127,60<br>σ 4,7                    | Te 106<br>0,06 ms                                                          | Te 107<br>3,1 ms<br>3,861                                               | Te 108<br>2,1 s<br><sup>β<sup>+</sup></sup><br>α 3,317<br>βp 2-3               | Te 109<br>4,1 s<br><sup>β+</sup><br>βp 3,3; 3,7<br>α 3,107                                                      | Te 110<br>18,6 s<br><sup>β+</sup><br><sup>α 2,624</sup><br><sub>γ 895; 606;<br/>219; 108</sub> | $\begin{array}{c} Te \ 111 \\ 19,3 \ s \\ \beta^+ \\ \gamma \ 851; \ 881; \\ 1268; \ 1392 \\ \betap \ 2,82; \ 2,66 \end{array}$                                    | Te 112<br>2,0 m<br><sup>β+</sup><br><sup>γ 373; 296;</sup><br>419                                                    |
| 51                                               | Sb<br>121,750<br>9 5,1                     | Sb 103                            | Sb 104<br>0,44 s<br>β <sup>+</sup>       | Sb 105<br>1,12 s<br><sup>β+</sup><br>p 0,478                               | Sb 106<br>0,6 s<br>β <sup>+</sup>                                       | Sb 107<br>4,6 s<br><sup>β+</sup><br>γ 1280; 819;<br>151; 704                   | Sb 108<br>7,6 s<br><sup>β+</sup><br>γ 1206; 905;<br>1599; 1273                                                  | Sb 109<br>16,7 s<br><sup>β+</sup> 4,4; 5,4<br>γ 925; 1062;<br>665; 1496                        | Sb 110<br>24,0 s<br><sup>β+</sup> 6,9<br>γ 1212; 985;<br>1243; 827                                                                                                 | Sb 111<br>75 s<br><sup>β<sup>+</sup> 3,3<br/>γ 154; 489;<br/>1033</sup>                                              |
| Sn 100<br>0,94 s<br><sup>B<sup>+</sup> 3,4</sup> | Sn 101<br>3 s<br><sup>β+</sup><br>βp 2-3,5 | Sn 102<br>3,4 s<br>β <sup>+</sup> | Sn 103<br>7 s<br><sup>β+</sup><br>βp 1-3 | Sn 104<br>20,8 s<br>β <sup>+</sup> 2,4<br>γ 133; 913;<br>401; 1407<br>m; g | Sn 105<br>34 s<br><sup>β+</sup><br>γ 1282; 1466;<br>309; g; m<br>βp 1-3 | Sn 106<br>2,1 m<br><sup>€</sup><br>β <sup>+</sup> 1,2<br>γ 387; 253;<br>477; m | $\begin{array}{c} Sn \ 107 \\ 2,9 \ m \\ \beta^+ \\ \gamma \ 1129; \ 1542; \\ 1001 \dots \\ m; \ g \end{array}$ | Sn 108<br>10,3 m<br>ϵ; β <sup>+</sup> 0,4<br>γ 396; 273;<br>169; 669<br>m                      | Sn 109<br>18,0 m<br>ϵ; β <sup>+</sup> 1,6<br>γ 1099; 1321;<br>331<br>g; m                                                                                          | Sn 110<br>4,11 h<br><sup>€</sup><br>γ283<br>m                                                                        |



### $^{54}$ Fe+ $^{54}$ Fe → $^{106}$ Te + 2n (E<sub>b</sub>= 182 MeV, I<sub>b</sub>= 10 pnA, 5 days)



#### **RITU Focal plane:**



B. Hadinia, et al., Phys. Rev. C 72, 041303 (2005)



### <sup>106</sup>Te gamma rays

 $\sigma = 25 \text{ nb} - (\text{Then})$  a new limit for in-beam  $\gamma$ -ray spectroscopy!





#### Gamma-gamma coincidences at $\sigma \sim 25$ nb



B. Hadinia, et al., Phys. Rev. C 72, 041303 (2005)



#### Te energy systematics and S.M. calculations

0



B. Hadinia, et al., Phys. Rev. C 72, 041303 (2005)





#### <sup>54</sup>Fe+ <sup>58</sup>Ni → <sup>110</sup>Xe + 2n ( $_{\sigma} \sim 50 \text{ nb}$ ) <sup>109</sup>T + p2n ( $_{\sigma} \sim 10 \text{ µb}$ ) (E<sub>b</sub>= 195 MeV, I<sub>b</sub>= <u>10 pnA</u>)

|                                                              |                          |                                            | 14                                         | N=Z ·                                            | Ba<br>137,327                                     | Ba 114<br>0,43 s                                      | Ba 115<br>0,45 s                                                         | Ba 116<br>1,3 s                                      |
|--------------------------------------------------------------|--------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------|
|                                                              |                          |                                            |                                            | N=56                                             | σ 1,3                                             | β+<br>βp                                              | β+<br>βp                                                                 | β <sup>+</sup><br>βp<br>g                            |
|                                                              |                          |                                            | 1                                          | Cs<br>132,\$0543                                 | Cs 112<br>500 μs                                  | Cs 113<br>17 μs                                       | Cs 114<br>0,57 s                                                         | Cs 115<br>1,4 s                                      |
|                                                              |                          |                                            | 55                                         | σ 29,0                                           | p 0,807                                           | p. 0.959                                              | β <sup>+</sup> ; α 3,239<br>γ 450; 698; 618<br>βρ 1,7–7,0<br>βα 7,0–12,5 | β+<br>βp                                             |
|                                                              |                          | -1                                         | Xe<br>131,29                               | Xe 110<br>?                                      | Xe 111<br>0,9 s                                   | Xe 112<br>2,7 s                                       | Xe 113<br>2,8 s                                                          | Xe 114<br>10 s                                       |
|                                                              |                          | 54                                         | σ 24                                       | α 3,745                                          | α 3,589; 3,500                                    | β <sup>β</sup> α 3,216                                | γ 121; 689<br>βp 2-7<br>βα 7-10                                          | β <sup>+</sup><br>γ 309; 162;<br>104; 440            |
|                                                              | l<br>126,90447           |                                            | l 108<br>36 ms                             | l 109<br>100 μs                                  | l 110<br>0,65 s                                   | l 111<br>2,5 s                                        | 112<br>3,42 s                                                            | l 113<br>5,9 s                                       |
| 53                                                           | r 6,15                   |                                            | α 3,947                                    | p 0,813                                          | <sup>β+</sup><br>α 3,444<br>βp 2,5-6,0<br>βα 7-12 | β <sup>+</sup><br>α 3,152<br>γ 341; 117;<br>321; 266  | γ 689; 787; 795;<br>1143<br>βp 2,0-6,0<br>βα 6-12                        | β <sup>+</sup><br>α 2,610<br>γ 463; 622;<br>351; 567 |
| -                                                            | Te<br>127,60             | Te 106<br>0,06 ms                          | Te 107<br>3,1 ms                           | Te 108<br>2,1 s                                  | Te 109<br>4,1 s                                   | Te 110<br>18,6 s                                      | Te 111<br>19,3 s                                                         | Te 112<br>2,0 m                                      |
| DZ                                                           | σ 4,7                    | α 4,128                                    | α 3,861                                    | β <sup>+</sup><br>α 3,317<br>βp 2–3              | β <sup>+</sup><br>βp 3,3; 3,7<br>α 3,107          | α 2,624<br>γ 895; 606;<br>219; 108                    | β'<br>γ 851; 881;<br>1268; 1392<br>βp 2,82; 2,66                         | β <sup>+</sup><br>γ 373; 296;<br>419                 |
| Sb Sb 1<br>121,760                                           | 03 Sb 104<br>0,44 s      | Sb 105<br>1,12 s                           | Sb 106<br>0,6 s                            | Sb 107<br>4,6 s                                  | Sb 108<br>7,6 s                                   | Sb 109<br>16,7 s                                      | Sb 110<br>24,0 s                                                         | Sb 111<br>75 s                                       |
| 51<br>σ5,1 p?                                                | β+                       | β <sup>+</sup><br>p 0,478                  | β+                                         | β <sup>+</sup><br>γ 1280; 819;<br>151; 704       | β <sup>+</sup><br>γ 1206; 905;<br>1599; 1273      | β <sup>+</sup> 4,4; 5,4<br>γ 925; 1062;<br>665; 1496  | β <sup>+</sup> 6,9<br>γ 1212; 985;<br>1243; 827                          | β <sup>+</sup> 3,3<br>γ 154; 489;<br>1033            |
| Sn 100 Sn 101 Sn 1<br>0,94 s 3 s 3,4                         | 02 Sn 103<br>5 7 s       | Sn 104<br>20,8 s                           | Sn 105<br>34 s                             | Sn 106<br>2,1 m                                  | Sn 107<br>2,9 m                                   | Sn 108<br>10,3 m                                      | Sn 109<br>18,0 m                                                         | Sn 110<br>4,11 h                                     |
| β <sup>+</sup> 3,4 β <sup>+</sup><br>βp 2-3,5 β <sup>+</sup> | β <sup>+</sup><br>βp 1–3 | β' 2,4<br>γ 133; 913;<br>401; 1407<br>m; g | β'<br>γ 1282; 1466;<br>309; g; m<br>βp 1–3 | ε<br>β <sup>+</sup> 1,2<br>γ 387; 253;<br>477; m | γ 1129; 1542;<br>1001<br>m; g                     | ε; β <sup>+</sup> 0,4<br>γ 396; 273;<br>169; 669<br>m | ε; β* 1,6<br>γ 1099; 1321;<br>331<br>g; m                                | ε<br>γ 283<br>m                                      |



M. Sandzelius *et al.,* Phys. Rev. Lett. 99, 022501 (2007) M. Perti et al. Phys.Rev. C 76, 054301 (2007)



### Identification of excited states in <sup>110</sup>Xe







#### Clean mother-daughter correlations essential for selecting the <sup>110</sup>Xe nuclei



#### Xe experimental energy systematics

110



Evidence for enhanced collectivity near N=Z!

#### Xe and Te energy ratios





#### Comparing theory with experimental B(E2) values for Xe - Ba isotopes Raman *et al.*, PRC '95





# TRS calculations for neutron deficient Xe isotopes predict decreasing collectivity with decreasing N





### **Iodine energy systematics**

109 2.0 23/2 Energy (MeV) 1.0 15/2-11/2-0.0 -1.07/2 5/2+ 7/2+ 127 129 131 125 A: 109 113 115 117 119 121 123

# Suggest a larger quadrupole deformation as the N=50 shell closure is approached





### Conclusions and outlook

- In-beam gamma-ray spectroscopy is possible down to 10's of nb x.s. using RDT and efficient Ge arrays
- Evidence for enhanced quadrupole collectivity in the Te, I and Xe isotopes as N → Z, against "common wisdom"
- np correlations (np pairing) driving the collectivity? (New effect, not considered earlier in quest for np pairing)
- Recent QRPA calculations (Delion, Liotta, Wyss et al.) confirm isoscalar pairing scenario for enhanced collectivity
- Theoretical models accounting for detailed dynamic coupling of protons and neutrons are needed.





# Comparing theory with experimental B(E2) values (Raman estimates) for extremely neutron deficient Xe isotopes



- B(E2) values are a measure of nuclear collectivity
- Theoretical models predict a decrease in B(E2) values for decreasing N

 $B(E2; 2_1^+ \to 0_1^+) \approx 0.66E(2_1^+)^{-1}Z^2A$ 

The empirically deduced values<sup>\*</sup> reveal a leveling off and a even a small *increase* of the B(E2) value for <sup>110</sup>Xe



#### Light Xe isotope pairing gap systematics



#### D. Delion, R. Liotta, R. Wyss et al. (in preparation)

