Knockout experiments at GANIL with the EXOGAM+NaI array @ SPEG

B. Fernández-Domínguez Univ. of Liverpool

Campaign EXOGAM+NaI @SPEG (Sept-Oct 2006)

✓ E452 : (M. Chartier, N. Orr et al.)

"Spectroscopy of neutron-rich Oxygen, Fluorine nuclei by single-neutron knock-out"

✓ E491 : (L. Trache, F. Carstiou et al.)

"Search of a possible $1d_{5/2}$ and $2s_{1/2}$ level inversion in ²³Al and its consequences on the ²²Mg(p, γ)²³Al stellar reaction rate"

Spectroscopic tool : KNOCKOUT

REVIEW: Hansen & Tostevin, Ann. Rev. Nucl. Part. Sci. (2003)

Exclusive measurements

<u>Measurements \Rightarrow Observables</u>

 $\begin{array}{l} d\sigma/dp \ \Rightarrow \ell_n \\ \gamma \Rightarrow \mathsf{E}^{\mathsf{x}}_{\mathsf{core}} \ \ \sigma_{\mathsf{-1n}}(\mathsf{J}^{\pi}_{\mathsf{core}}) \Rightarrow \ \mathcal{C}^2 \mathsf{S} \end{array}$

E452 : Single-neutron knockout around N=16

Study of the structure of light n-rich nuclei

- ²⁵O unbound
- F-isotopes extend beyond N=14

n-drip line just known for the ligth nuclei up to oxygen

E452 : Single-neutron knockout around N=16

Inclusive measurements

Exclusive measurements

Fragmentation of 77MeV/nucleon ³⁶S beam at GANIL.

EXOGAM @ SPEG: 8 Ge Clovers + 4x3 NaI Clusters

New support structure & C-fibre reaction chamber NIM + VME based electronics

γ -array EXOGAM+NaI (simulations)

 Geant4 simulations determine optimum target – detector distance for Ge clovers and NaI clusters.

- EXOGAM Germanium clovers good energy resolution.
- NaI clusters high efficiency.

γ -array EXOGAM+NaI (experimental performance)

E452: PRELIMINARY RESULTS : Identification

Remove Beam contribution : $\Delta E-Xf$

Isotopic Identification : ΔE -TOF

SPEG : Focal Plane Detectors

Ionisation Chamber : △E Plastic : E & TOF (HF-Plastic) Drift Chambers : Xf

Inclusive Momentum Distributions (SPEG - Focal Plane)

E452: PRELIMINARY RESULTS : Mg-isotopes (γ-spectra)

EXOGAM- Ge array spectra (Doppler corrected) + addback

E452: PRELIMINARY RESULTS : ²⁸Mg (γ-spectra)

EXOGAM- Ge array spectra (Doppler corrected) + addback

-spectroscopic factors under analysis

γ-ray spectroscopy of Low-Lying Levels in ²⁸Mg
T. R. Fisher PRC Vol. 7 Num 5. (1973)

E452: PRELIMINARY RESULTS : ²⁹Mg (y-spectra)

EXOGAM- Ge array spectra (Doppler corrected) + addback Single-n removal from ³⁰Mg

MSU results : ²⁹Mg

- Observe similar transtions
- Pretty good statistics despite the experiment being focus on F & O
- -Spectroscopic factors

E452: PRELIMINARY RESULTS : $^{30}Mg(\gamma-spectra)$

EXOGAM- Ge array spectra (Doppler corrected) + addback

-Spectroscopic factors.

β-decay of ³⁰Na
P. Baumann et al.
PRC Vol. 39 N. 2. 1989) 629.

E452: PRELIMINARY RESULTS : 25F -> 24F*

SUMMARY

Exclusive set-up for knockout experiments to probe single-particle structure

✓ First EXOGAM+NaI campaign @ SPEG

 \checkmark Systematic spectroscopy from ^{29}Mg up to ^{32}Mg & quantitative measurement of the intruder configuration

 \checkmark New spectroscopic information will be obtained from the data on Fluorine (²⁵F,²⁴F), Oxygens (²⁴O,²³O), Ne and Na isotopes

COLLABORATION

- B. Pietras¹, N. Patterson², B. Fernández-Domínguez¹, M. Chartier¹, N.A. Orr⁷,
- L. Achouri⁷, J-C. Angélique⁷, N. I. Ashwood⁵, A. Banu⁹, B. Bastin⁶, J. Brown¹¹,
- R. Borcea ¹², W.N. Catford ², S. Franchoo ⁸, M. Freer ⁵, L. Gaudefroy ⁶, B. Laurent ⁷,
- M. Labiche³, R. C. Lemmon³, F. Negoita¹⁰, S. Paschalis¹, E. Paul¹, M. Petri¹,
- P. Roussel-Chomaz ⁶, M. Staniou ¹², M. Taylor ¹¹, J.S. Thomas ², L. Trache ⁹.
- (1) Department of Physics, University of Liverpool, Liverpool, L69 7ZE, UK.
- (2) Department of Physics, University of Surrey, Guildford GU2 5XH, UK.
- (3) Daresbury Laboratory, Warrington, WA4 4AD, UK.
- (4) Instituto de Fisica Corpuscular, Valencia, Spain.
- (5) School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK.
- (6) Grand Accélérateur National d'Ions Lourds, 14000 Caen, France.
- (7) Laboratoire de Physique Corpusculaire, 14000 Caen, France.
- (8) Institut de Physique Nucléaire d'Orsay, 91406 Orsay, France.
- (9) Department of Physics, Texas A&M University
- (10) Department of Physics, University of Bucharest
- (11) Department of Physics, University of York
- (12) GSI, Planckstr. 1, 64291 Darmstadt

* Working on analysis