

RISING Rare ISotope INvestigation at GSI

F. Camera University of Milano and INFN sez. Milano

Nuclear structure and dynamic of exotic nuclei

The Accelerators:

UNILAC (injector) E<11.5 MeV/n
SIS 18Tm U1GeV/n

Beam Currents: 10⁸ - 10⁹ pps

FRS \Rightarrow secondary radioactive ion beams:

- Fragmentation/fission of primary beams
- High secondary beam energies:
 - 100 700 MeV/u
- Fully stripped ions
- Reactions on a secondary target
- Implantation inside a stopper

Why at FRS@GSI?

Unique European facility for relativistic $(\beta \ge 0.4)$ exotic beams

- High beam intensities
- lifetime range \geq 100 ns
- fully stripped beams
- Spin Aligned beams
- Unique for exotic heavy nuclei

EUROBALL Cluster Detectors

Beam Tracking system

Miniball – Hector Active Target

RISING

Beam Time

- Fast Beam Campaign \approx 100 days
- g-factor Campaign \approx 35 days
- Stopped Beam Campaign ≈ 100 days

Results

More than 40 papers More than 50 talks at international conferences/workshops

EUROBALL Cluster Detectors

Beam Tracking system

Miniball – Hector Active Target

Rising physics: FAST BEAM CAMPAIGN

Coulomb Excitation and Fragmentation at Relativistic Energy

Fast Beam Campaign (2003-2005)

Evidence of low energy E1 collective Dipole strength PDR

Talk by O. Wieland

Some RESULTS

The B(E2) of the first 2⁺ state in ¹⁰⁸Sn was measured

Data confirmed in a 2007 PRL from MSU

A,Banu et al PRC72(2005)061305R

The B(E2) of the first 2⁺ state in ^{54,56,58}Cr was measured

The results are consistent with a subshell closure at N = 32. Shell model calculations fail to account for the B(E2) values at N = 32. The T = 2 mirrors ³⁶Ca and ³⁶S: isospin symmetry of shell gaps at the dripline P.Doornebal et al Phys. Lett. B647(2007)237

First 2+ state observed for the first time

Different detectors have seen the same Things – consistency check

Mirror Energy Difference (MED) = 276 keV

The large MED points to shell structure and/or coupling to the continuum.

The MED is understood with an isospin symmetric USD based interaction

Ca isotopes below N = 16 develop another "island of inversion".

Rising physics: g-Factor CAMPAIGN

50

126

²⁰⁸Pb

- ✓ Spin-alignment in projectile fission and g-factors around ¹³²Sn
- Spin-alignment and g-factor of isomers in the neutron deficient Pb-region.

N=Z

50

28

 ✓ Spin-alignment and g-factors of isomers in ^{127,128}Sn from fragmentation of a ¹³⁶Xe beam.

EXPERIMENTAL SET-UP

g-factor campaign (2005)

g-factor and Spin Alignment In ¹⁹²Pb 12⁺ isomer

Talk by M. Kmiecik

Some RESULTS

g-factor measurement of the 19/2⁺ isomer in ¹²⁷Sn

L.Atanasova et al. Prog. in Part. and Nucl.Phys.59(2007)355

"The deduced g-factor |g| 0.16 is in agreement with theoretical estimates based on the empirical g-factors. "

Rising physics: PASSIVE STOPPER BEAM CAMPAIGN

Stopped beam campaign (running)

Passive stopper for isomer and β decay studies

Talks A. Jungclaus – D. Rudolph

Some RESULTS

Highest spin isomers ever seen in projectile fragmentation:

• ¹⁴⁸Tb (27ħ)

• 147Gd (49/2)

Isomeric ratios for ²⁰⁶Hg

• New Isomers in:

²⁰⁵Au, ²⁰⁴Pt, ²⁰³Ir, ¹⁸⁹⁻¹⁹⁰Ta submitted to PRL

and in many other nuclei

Thanks to Z. Podolyak,

Neutron–proton pairing competition in N = Z nuclei: Metastable state decays in the proton dripline nuclei ⁸²Nb and ⁸⁶Tc

A. Garnsworthy et al. Phys. Lett. B660(2008)326

Impressive improvement in statistics and spectral quality

Coincidence spectra have been obtained

N=Z odd-odd nuclei are an ideal case for the study of np pairing

 ^{82}Nb and ^{86}Tc are the heaviest odd-odd nuclei in which $\gamma\text{-rays}$ transitions have been observed

Proton decay branch?

Axial symmetry and γ softness can be inferred E(4⁺)/E(2⁺) ratio

Data suggest a dominance of T=1 pairing interaction over its T=0 counterpart

One π whole in ¹³²Sn spectrum -¹³¹In

SM including v core excitation by H. Grawe

The same order of states expected! Preliminary: Shell gap reduction of <200keV

It is a measurement of a core excited ¹³¹In γ -ray

Accurate estimate of the shell gap below ¹³²Sn It can be extracted within the particle-hole residual interaction

This is the first time that interaction with the right monopole shift is available for this model space.

M.Gorska, L. Caceres, paper in preparation.

Rising physics: ACTIVE STOPPER BEAM CAMPAIGN

p-n pairing effects in ⁶²Ge beta decay

Does a deuteron-like condensate isoscalar (*T*=0) np pairs exists ?

Existence of an enhanced β -decay rates between the ground state of an eveneven *N*+2=*Z* nucleus and the lowest *I*=1 state of its odd-odd N=Z neighbour

No p-n T=0 pairing effects observed in the β -decay of ⁶²Ge

Thanks to A.Gadea and A.Algora

Nuclear Structure "south" of ²⁰⁸Pb

 γ -ray spectra are limited to Isomer cascades with T_{1/2} for ~ 10 ns to 1 ms. **Stopped Beam – Active Stopper**

 ^{205}Au

To be submitted

β-particles for $T_{1/2}$ up to ~ minutes and associated delayed γ-rays.

RESULTS WILL CONTINUE TO ARRIVE

Rising Technical Achievement

In addition to excellent physics results the RISING collaboration has worked also on the technical aspects concerning measurements with exotic beams RISING experimental campaigns should pave the way for experimentalists to the future measurements using high efficiency tracking arrays (p.es. AGATA) in high intensity radioactive beams facilities

With the RISING array the community is able to identity and solve all the 'technical' problems in preparation to second generation gamma arrays.

- Fast protons/LCP
- Background
- Secondary beam spin alignment
- Prompt gamma flash
- Angular Distributions
- Transition from Analog to Digital Electronics
- Software and for offline/online analysis and Diagnostic

Pre-amplifier saturation and dead time induced by fast LCP

In-beam pre-amplified Ge signal

Huge amplitude (>> 20MeV), overshooting signals due to charged particles directly hitting the Ge crystal

"normal" low energy gamma rays

The AGATA preamplifier has been especially designed to correct this saturation effect firstly observed during RISING experiments

Thanks to P.Bednarczyk and A. Pullia

~7us to reset 50MeV event

Background

Since the very beginning it was well known that most of the radiation detected in the array did not come from the target. What was not known was the nature, intensity, time and energy spectra of such background

Thanks to Hector collaboration

HPGe detectors (Thr. \approx 100 keV) FWHM \approx 20 ns

Thanks to P.Bednarczyk and Hector collaboration

Secondary Beam spin alignment

It was proved the PRESENCE of spin-alignment

- ¹²⁷Sn produced using ²³⁸U-fission at 750 MeV/u
 - g-factor (4.5 μ s 19/2 isomer) \approx 0.164
 - A ≈ 3.5 %

- in ¹³⁶Xe-fagmentation at 700 MeV/u
 - g-factor (4.5 μ s 19/2 isomer) \approx 0.168
 - A ≈ 3-6 %

Neutron rich heavy nuclei become accessible for moments studies

Thanks to G. Neyens

Software and for offline/online analysis and Diagnostic

CRACOW: an interactive and sophisticated online analysis code Jerzy Grebosz, Comp. Phys. Comm.

Thank to the extended debugging and the experience acquired during RISING campaign CRACOW like code will be used also for the AGATA demonstrator campaigns

Prompt gamma flash

At the beginning of RISING Stopped beam campaign an open problem was the 'blinding' effect due to prompt radiation which could destroy the efficiency of the array for the detection of delayed gamma rays

γ Angular Distribution at intermediate energies

Coulomb Excitation should dominate

- as beam energy increases
- as Z increases

As expected for low Z projectiles

Some discrepancies for high Z nuclei

Thanks to P.Bednarczyk

FUTURE

- EOC has accepted Rising bid of clusters up to the end 2009
- RISING \Rightarrow PRESPEC
 - New MOU to be signed
- Four Class A RISING experiment in the backlog (2009)
- New Fast Beam Campaign
 - Fast Ramping Magnets
 - New source
 - New Calorimeter Telescope LYCCA-0
 - LaBr₃ detectors

•

FAST RAMPING MAGNETS + NEW SOURCE

Past:

• it took up to 2.5 s to ramp up the energy in SIS from injection to 1 GeV/u

Now:

 It can be done in 0.7 s reducing the spill-off time accordingly increasing the mean beam current.

lon	Old fast campaign	New Campaign
¹²⁴ Xe	6 10 ⁷ ions/second	2 10 ⁹ ions/second
²³⁸ U		2 10 ⁹ ions/second
⁴⁰ Ca	3 10 ⁸ ions/second	10 ⁹ ions/second
⁵⁸ Ni		2 10 ⁹ ions/second

LYCCA-0 Calorimeter Lund – York – Cologne CAlorimeter

- Physic
- Energy
- Time relation
- $\Delta \mathbf{E} \mathbf{detecto}$
- DSSSD, 58 ×
 PCB frame,
- E detector
- Csl, 19 × 19
- Teflon wrap
- **PD readout**
- PD, 10.5 × 1'
- PCB, signal

Thanks to D.Rudolph and M.Taylor

D = 2 m

D = 3.4 m

Thanks to D.Rudolph and M.Taylor

D.Rudolph LYCCA Technical Design Report, V1.1, May 2008

Rising Team

H.J. Wollersheim, D.E. Appelbe, A. Banu, R. Bassini, T. Beck, F. Becker, P. Bednarczyk, K.-H. Behr, M.A. Bentley, G. Benzoni, C. Boiano, U. Bonnes, A. Bracco, S. Brambilla, A. Brunle, A. Burgerh, K. Burkard, P.A. Butler, F. Camera, D. Curien, J. Devin, P. Doornenbal, C. Fahlander, K. Fayz, H. Geissel, J. Gerl, M. Gorska, H. Grawe, J. Grebosz, R. Griffiths, G. Hammond, M. Hellstrom, J. Hoffmann, H. Hubel, J. Jolie, J.V. Kalben, M. Kmiecik, I. Kojouharov, R. Kulessa, N. Kurz, I. Lazarus, J. Lin, J. Leske, R. Lozeva A. Maj, S. Mandal, W. Meczynski, B. Million, G. Munzenberg, S. Muralithar, M. Mutterer, P.J. Nolan, G. Neyens, J. Nyberg, W. Prokopowicz, V.F.E. Pucknell, P. Reiter, D. Rudolph, N. Saito, T.R. Saito, D. Seddon, H. Schaffner, J. Simpson, K.-H. Speidel, J. Styczen, K. Summerer, N. Warr, H. Weick, C. Wheldon, O. Wieland, M. Winkler, M. Zieblinski, A.B. Garnsworthy, P.H. Regan, L. Cáceres, S. Pietri, Y. Sune, Zs. Podolyák, S.J. Steer, R. Hoischen, A. Heinz, A. Kelic, F. Montes, S. Tachenov, E. Werner-Malento, B.B. Blank, C. Brandau, W.N. Catford, I.J. Cullen, Zs. Dombrádi m, E. Estevezn, W. Gelletly, G. Ilieo, G.A. Jones a, A. Jungclaus, F.G. Kondev g, T. Kurtukian-Nieto, S. Lalkovski I,r, Z. Liua, S. Myalski h, M. Pfützner, S. Schwertel, T. Shizuma, A.J. Simons, P.M. Walker a, F.R. Xuv,

and many others

GSI

Bonn, Darmstadt, Koln, Kracow, Louvain, Madrid, Milano, Liverpool, Lund, Surrey,

Thanks to everyone

Thank you for the attention