

Energy Density Functional Methods

Modern view and undergoing developments

Thomas Duguet

DSM/IRFU/SPhN, CEA Saclay NSCL and Department of Physics and Astronomy, MSU

Outline

1.EDF methods

- Basic features
- Current focuses
- 2. Gamma ray spectroscopy
 - Natural interplay; e.g. shell evolution, transact., shape coex.
 - Example: shape coexistence in neutron deficient Kr isotopes
- 3. Making EDF methods more predictive and reliable
 - Constructing non-empirical energy functionals
 - Regularizing *spurious* contributions to MR calculations

1. EDF methods

Basic features

Current focuses

dapnia

Energy Density Functional methods: basics

Basic elements

- Approaches not based on a correlated wave-function
- Energy is postulated to be a functional of one-body density (matrices) $\mathcal{E}[\rho,\kappa,\kappa^*]$
- Symmetry breaking is at the heart of the method
- Two formulations (i) Single-Reference (ii) Multi-Reference

Pros Single-Reference	Cons Multi-Reference
 Use of full single particle space Collective picture but fully quantal 	 No universal parametrization Beyond mean-field >> Empirical = limited predictive power
• Nuclear regulation of 5 at $(A \gtrsim 16)$	• AIPWHATTE OUICURATE & VINSR
 Binding what step drention energies 	· Dynannvedratoffwertunting)inorheations
• Shell structure hand palating gaps	• Vibrational excitations $\approx 700 \text{ keV}$)
 Fission and deformation properties 	 LACM and shape coexistence
· Stangedengrines, local the skin, = ranki-local . M. transitions in the lab frame	
 Produmeters adjusted our esett of identa (bias on bulk properties so far) 	
 Similar good performances for properties of known nuclei 	
• "Asymptotic freedom" as one jumps into the <i>next major shell</i>	

Present focuses

Spectroscopy

dapnia

saclay

- Shell evolution
 - 1qp states in odd nuclei -> Shape/spin polarization, purity of states
 - 1qp states, K-isomers and rotational states in transactinides
 - Enriched EDF ->Tensor, spin orbit, density dependencies
- Spectroscopy of collective modes
 - Complex nuclei -> Triaxiality, cranking
 - First 2⁺ in semi-magic nuclei -> Triaxiality, coupling to 2qp states

Predictive power

- Improved fitting protocole
 - Better use of existing/new data -> superdef, odd, neutron rich
 - Fitting algorithm and post analysis methods
- Construct non-empirical energy functional from NN/NNN

2. Gamma ray spectroscopy

Shape coexistence in neutron-deficient Kr isotopes

Shape coexistence in light Kr isotopes

dapnia CCC saclay M. Bender et al., PRC 74, 024312 (2006)

- •Several obl./prol./spher. gaps at 36, 38, 40
- •Shape coexistence expected in Kr, Se...
- •Confirmed by SR calculation (Skyrme)

•Oblate shape favored from ⁷²Kr to ⁷⁸Kr

•Proj. on J (MR calc.) brings prolate minima down

Systematics of the light krypton isotopes

 \succ energy of excited 0⁺ > E0 strengths ρ^2 (E0) > configuration mixing > Inversion of ground state shape for ⁷²Kr

•Exp: determine sign of spectroscopic quadrupole moments Qs directly

•Low-energy Coulomb excitation of ⁷⁴Kr and ⁷⁶Kr at SPIRAL •Multi-step excitation possible + differential measurement: $d\sigma/d\theta$

Theory: impact of shape fluctuations and shape mixing through MR calc.?

•GCM calculation along Q_{20} degrees of freedom (Skyrme)

•Bohr halmitonian calc. along Q_{20} and Q_{22} degrees of freedom (Gogny)

Thomas Duquet

dapnia

saclav

Comparison between MR calculations and experiment prolate oblate 61 Q_<0 Q₅>0 4_{2}^{+} prolate oblate 0 41 61 3,+ 2814 200 2796 2^{+}_{2} 02+ 2023

41

 2^{+}_{1}

 O_{1}^{+}

2468

GCM calculation Axial deformation Skyrme SLy6 M. Bender et al. PRC 74, 024312 (2006)

⁷⁶Kr

Experimental B(E2; \downarrow) [e^{2} fm⁴]

E. Clément et al., PRC 75, 054313 (2007)

GCM (GOA) calculation Triaxial deformation Gogny D15

M. Girod et al., to be published

Thomas Duquet

European Gammapool Workshop - Paris, May 27th-30th 2008 9

Comparison of Multi-Reference configuration mixing calculations

Difference #1: energy functional

Skyrme SLy6 \Leftrightarrow Gogny D1S Bender et al. Girod et al.

Similar s.p. energies on the SR level

Difference #2: generator coordinates

axial quadrupole deformation $q_0 \Leftrightarrow$ triaxial quadrupole deformation q_0, q_2

- Good agreement for in-band B(E2) and quadrupole moments
- Wrong ordering of states: oblate ground-state shape for 72 Kr \rightarrow 78 Kr
- Excited states dilated in energy
- K=2 states outside model-space

- Excellent agreement for excitation energies, B(E2), and guadrupole moments
- > Inversion of ground-state shape from prolate in ⁷⁶Kr to oblate in ⁷²Kr reproduced
- Assignment of prolate, oblate, and K=2 states
- 1. Triaxiality is key to describe prolate-oblate shape coexistence in Kr region
- 2. The deficiencies of s.p. spectra pointed out by Bender et al remain

Thomas Duquet

<u>C</u>A

3. Making EDF methods more predictive and reliable Constructing *non-empirical* energy functionals

Regularizing spurious contributions to MR calculations

Construction of non-empirical (pairing) energy functional

T. Lesinski, T. D., K. Bennaceur, J. Meyer, to be published

- Empirical functionals lack predictive power
- Microscopic origin of nn/pp superfluidity in nuclei?
- Functional constructed at lowest order in bare NN

- Neutron/proton gaps are consistently close to experiment
- Coulomb responsible for 30% decrease of the gaps
- Higher-orders and NNN effects negligeable or cancel out?

Thomas Duguet

dapnia

(A)

saclay

European Gammapool Workshop - Paris, May 27th-30th 2008 13

Removing spurious contributions from MR calculations

Unexpected spurious content of Particle Number Restoration calculations J. Dobaczewski, M. V. Stoitsov, W. Blazarewicz, and P.-G. Reinhard PRCZ6 (2007) 054315 saclav

 $z \frac{9}{5} - 0.6$

E (MeV)

-1409

-1411

-14**2**2 -143

-1415

1481

E (MeV)

-1410 + 3

Regularization method

dapnia

- Valid for any MR calculation
- For integer powers of the density
- Ex: calculation of ¹⁸O with SLy4 D. Lacroix, T. D., M. Bender, to be published Enough integration points
- · Ex: caliculta and of the property of the sill
 - Removesputivisities =

M-Bender diffe D. Lagookoty beopublished

Same scale as excitations

M. Bender, T. D., D. Lacroix, to be published

- Conclusions
 - Need to implement in all MR codes 1414
 - Need to design new EDFs

-0.4

-0.2

0.0

protons

¹⁸⁶P

0.8

0.6

0.4

energy gain from projectio

angles uncorrected

Conclusions and Perspectives

- EDF methods are becoming a spectroscopic-quality tool
- Lot has been done but lot to do!
 - 1. Formal issues
 - 2. Performances of empirical EDFs
 - 3. Connection to underlying NN/NNN interactions
 - 4. Extension of existing codes, in particular for MR calculations
 - 5. Systematic applications to nuclei with extreme N/Z
 - 6. More applications to systems of experimental interest
- Perspectives with coming generation of RIB facilities look really good
- More and more interactions with experimentalists expected...

From underlying NN and NNN interactions

Single-Reference = « mean-field »

- First level of implementations
- Density matrices ρ and κ constructed from one product state
- Incorporates (static) correlations beyond Hartree-Fock

- Numerically friendly
- Mass table of deformed even-even nuclei in a few hours

Thomas Duguet

dapnia

saclay

Multi-Reference = « beyond mean-field »

- Second level of implementation
- Set of mixed states \Leftrightarrow associated *transition* density matrices
- saclay

 Restoration of broken symmetries + quantum collective fluctuations

- Numerically demanding
- Systematics possible but more than 4 coll. Var. is still challenging

Thomas Duguet

dapnia

Standard energy functionals

saclay

Skyrme = quasi-local / Gogny = non-local

Skyrme = all local densities from ho_q and κ_q up to second order in ∇

$$\begin{split} \mathcal{E}[\rho,\kappa,\kappa^*] = &\int\!\!d\vec{r} \sum_{qq'} \left[\left. \begin{array}{c} C_{qq'}^{\rho\rho} \rho_q \,\rho_{q'} + C_{qq'}^{ss} \,\vec{s}_q \cdot \vec{s}_{q'} + C_{qq'}^{\rho\Delta\rho} \,\rho_q \,\Delta\rho_{q'} + C_{qq'}^{s\Delta s} \,\vec{s}_q \cdot \Delta \vec{s}_{q'} \right. \\ &+ C_{qq'}^{\rho\tau} \left(\rho_q \,\tau_{q'} - \vec{j}_q \cdot \vec{j}_{q'} \right) + C_{qq'}^{J^2} \left(\vec{s}_q \cdot \vec{T}_{q'} - \mathcal{J}_q \,\mathcal{J}_{q'} \right) \\ &+ C_{qq'}^{\rho\nabla J} \left(\rho_q \,\vec{\nabla} \cdot \vec{J}_{q'} + \vec{s}_q \cdot \vec{\nabla} \wedge \vec{j}_{q'} \right) + C_{qq'}^{\nabla s \nabla s} \left(\vec{\nabla} \cdot \vec{s}_q \right) \left(\vec{\nabla} \cdot \vec{s}_{q'} \right) \right] \\ &+ \sum_{q} \left[\begin{array}{c} C_{qq}^{\tilde{\rho}\tilde{\rho}} |\tilde{\rho}_q(\vec{r})|^2 + \text{additional terms involving gradients} \end{array} \right] \end{split}$$

- Universal = applicable to all nuclei without local adjustment
- Empirical = no link to NN/NNN + fitted on experimental data
- Simplistic density-dependent couplings
- Similar good performances for properties of known nuclei
- "Asymptotic freedom" as one jumps into the *next major shell*

Which theoretical method(s)?

- No "one size fits all" theory for nuclei
- · All theoretical approaches need to be linked eventually