Nuclear astrophysics with stable beams: Present status and perspectives in nuclear astrophysics studies of the ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction

> Problematics Present status Perspectives

A. Lefebvre-Schuhl CSNSM Orsay

> May 27-30th 2008 Gammapool, Strasbourg

$^{12}C(\alpha, \gamma) ^{16}O$	S(E)	0-	10.957
T ~ 0.2 x 10 ⁹ K		4+	10.356
→ E(Gamow peak) ~ 300 k	eV Res.1	2+	9.8445
उ(300 keV) ≈ 10 -17 b	arn!	1- 2{	9.585 <u>8.8719</u>
Reaction rates			
→ Extrapolation : R- or K-matrix formalism Microscopic cluster models	$T_{9} = 0.2 \qquad \underbrace{0}_{12}C + \alpha$	1- 2+	7.1169 5.9171
For each contribution: captur	re to the	<u>3- 6</u> 0+ 6	5.0494
ground state and to	o excited states	\$:
E1 : large 1 ⁻ subthreshold resonance + 1 ⁻ level below the reac E2 : Direct capture + 2 ⁺ level below the react	tion threshold	0+ ¹⁶ 0	<u>g.s</u>
A. Lefebvre-Schuhl	$\rightarrow \text{ground state} \\ (\gamma \text{-ray angular dis})$	stributio	ns)
CSNSM and for L	$z^{-} \rightarrow$ excited state		

Indirect methods :

✓ β-delayed α-decay of ¹⁶N
 ✓ ¹⁶O Coulomb breakup
 ✓ Transfer reaction, ANC method
 ✓ Trojan-horse method
 ✓ β-delayed p-decay of ¹⁷Ne

Direct methods in direct kinematics: α -beam, ¹²C target, γ -ray detection

 \checkmark Intense α -beam : up to 700 pµA (Stuttgart dynamitron) pulsed α -beams (*Tokyo*, *Karlsruhe*)

 \uparrow ¹²C targets: isotopically pure and resistant to α -beams : ¹²C implantation

A. Lefebvre-Schuhl

CSNSM

efficient water cooling

 \checkmark sophisticated γ -ray arrays: angular distribution: in a few steps (turn table) simultaneously (4π -array) background suppression: shieldings or coincidences with pulsed beams Gammapool-Paris 2008/05/27-30

 γ -ray angular distributions :

in a few steps: turn table (as Kunz et al, Fey et al...) simultaneously: 4π-array (as Assunçao et al)

Ex : Assunçao et al. PRC 73 (2006) 055801 :

« Eurogam » setup

 γ-ray angular distribution at 9 different angles simultaneously with 9 HP-Ge detectors
 → very good energy resolution

Compton suppression (active BGO shields)

Total γ efficiency at 10 MeV : 1.2x10⁻³ in experimental conditions (7 10⁻³ at 1.33MeV)

Present S_{E1} results to the ground state $\sigma(E) = \frac{S(E)}{E} \exp(-2\pi Z_1 Z_2 e^2 / \hbar v)$

R-matrix fits of
✓α-scattering data
✓β-delayed α-decay of ¹⁶N
✓ the radiative capture data

taking into account 3 levels \rightarrow 4 interference combinations

Nucl. Phys. A758 (2005) 363c

 10^{2} (keV-b) 10 ر س ★ Dyer 74 Redder 87 Kremer 88 Duellet 96 Roters 99 Kunz 01 Gialanella 01 Assunçao 06 + Fey PhD-04 fixed phase Assuncao 06 free phase Plag PhD=05 10 0.75 1.25 2.25 2.53 1.5 2.75Energy (MeV)

A. Lefebvre-Schuhl CSNSM Gammapool-Paris 2008/05/27-30

Present S_{E2} results to the ground state

R-matrix fits of
✓α-scattering data
✓ the radiative capture data
taking into account 5 levels
→ 16 interference combinations

Best χ^2 -> S_{E2}(300) = 81 ± 22 keVb Hammer et al.*Nucl. Phys. A758* (2005) 363c

 \rightarrow S_{E1}, S_{E2} to ground state

Cascades and S_{tot}

 \rightarrow radiative capture to ¹⁶O excited states: J^{π} = 1⁻, 7.12 MeV ; J^{π} = 2⁺, 6.92 MeV and J^{π} = 0⁺, 6.05 MeV

High γ -ray background:

Up to 2006, only based on intensities of the 6.92 MeV and 7.12 MeV or both together γ -ray considered as giving the cascade amount:

 \Rightarrow only an upper limit

Results obtained either in direct or inverse kinematics

Kettner et al. Z. Phys. A **308** (1982) 73 Redder et al. Nucl.Phys. **A462**, 385 (1987)

Cascades to the 6.92 and 7.12 MeV levels

Redder et al. Nucl. Phys. A462, 385 (1987)

A. Lefebvre-Schuhl CSNSM Gammapool-Paris 2008/05/27-30 Buchmann& Barnes Nucl. Phys. A777 (2006) 254

Direct methods in inverse kinematics:

A. Lefebvre-Schuhl

CSNSM

ERNA's data Schürmann et al. EpJ A 26 (2005) 301 *Thanks Kunz, Strieder et al.*

Preliminary results : new R-matrix

3 R-matrix calculations S(300)

0	Fey et al (2004)	Buchmann and Barnes (2006)	NACRE (1999)
2 ex E _c	periments + previous _{cm eff} : 0.89-2.8 MeV	All available data + ERNA +DRAGON	
E1 ₀	$77 \pm 17 \text{ keVb}$	$80 \pm 20 \text{ keVb}$	79 ± 21 keVb
E2 ₀	$81 \pm 22 \text{ keVb}$	53 ⁺¹³ keVb	120 ± 60 keVb
Casc.	$4 \pm 4 \text{ keVb}$	7 ⁺¹³ keVb <i>(6.92 MeV</i>	/)
		25 ⁺¹⁶ keVb (6.05 Me	V)
Total	$162 \pm 39 \text{ keVb}$	(<i>Σ</i> =165 keVb)	

Perspectives

Gammapool-Paris 2008/05/27-30

A. Lefebvre-Schuh

New measurements to improve the precision on the S_{E1}

Accelerator of intense ⁴He beam 3 to 5 MV with ECR source With pulsed beams?

Gas vs ¹²C targets_

Coincidences with) a new γ-ray detector array (angular distributions, cascades)

+ a recoil separator

(for inverse kinematics studies)

2 in use : DRAGON (TRIUMF) and ERNA (Bochum)

Detection efficiency : up to 100% of the more probable charge state at the charge equilibrium (50% of the ¹⁶O with a poststripper)

- present limitations : intensity through WF, target extension
- only the total cross section

with dense jet gas target (smal extension)

A. Lefebvre-Schuhl CSNSM

Gammapool-Paris 2008/05/27-30

Eurogam-detector collaboration

 M. Assunção, M. Fey, A. Lefebvre-Schuhl, J. Kiener, V. Tatischeff, J.W. Hammer, C. Beck, C. Boukari-Pelissie, A. Coc, J.J. Correia, S. Courtin, F. Fleurot, E. Galanopoulos, C. Grama, F. Haas, F. Hammache, F. Hannachi, S. Harissopulos, A. Korichi, R. Kunz, D. Ledu, A. Lopez-Martens, D. Malcherek, R. Meunier, Th. Paradellis, M. Rousseau, N. Rowley, G. Staudt, S. Szilner, J.P. Thibaud, and J.L. Weil CSNSM-Orsay; IfS-Stuttgart; IPHC/IReS-Strasbourg; KVI-Groningen;
 INP-Athens; GSI-Darmstadt (IPN-Orsay); PI-Tübingen; DP-Lexington (II-Budapest)

ERNA's collaboration

D. Schürmann, A. Di Leva, L. Gialanella, D. Rogalla, F. Strieder, N. De Cesare, A. D'Onofrio, G. Imbriani, R. Kunz, C. Lubritto, A. Ordine, V. Roca, C. Rolfs, M. Romano, F. Schümann, F. Terrasi, and H.-P. Trautvetter

INFN & Univ.-Naples; IE3-Bochum;

PARIS collaboration

100 physicists, engineers and PhD students, 38 institutions from 16 countries and principally : *IFJ PAN-Kraków,* ATOMKI-Debrecen, CSNSN-Orsay and Univ.-Warsaw

A. Lefebvre-Schuhl CSNSM Gammapool-Paris 2008/05/27-30