

Pygmy Dipole Resonance (PDR) in exotic ⁶⁸Ni

O. Wieland INFN Section of Milan and University of Milan, Italy

Introduction

Pygmy Resonance

Analysis and Results

RISING data on ⁶⁸Ni Virtual photon scattering <u>Conclusions</u>

Pygmy Dipole Resonance in n-rich nuclei

how collective properties change with n number
important astrophysical implications for r-process

collective or non-collective nature of E1 states ?

Virtual photon scattering technique First pygmy coulomb excitation experiment with a fast relativistic beam

GDR - PYGMY Excitation

600 MeV/u ⁶⁸Ni + ¹⁹⁷Au (April 2005) 400 MeV/u ⁶⁸Ni + ¹⁹⁷Au (May 2004)

• High selectivity for dipole excitation

 $\frac{\sigma(GDR)}{\sigma(GQR)} \approx 20$

Virtual photon excitation and decay of **GDR - PYGMY**

T.Aumann et al EPJ 26(2005)441

→At large energies the cross section for the Coulomb excitation of the GR overcomes the nuclear geometrical cross section!

GDR Ground state decay branching ratio

~ 2% measured on ²⁰⁸Pb

[Beene et al PRC 41(1990)920]

Coulomb excitation of ⁶⁸Ni @ 600 AMeV RISING ARRAY

Euroball 15 Clusters

Located at 16.5°, 33°, 36° degrees Energetic threshold ~ 100 keV

Hector 8 BaF₂

Located at 142° and 88° degrees Energetic threshold ~ 2 MeV

Miniball 7 HPGe segmented detectors Located at 46°, 60°, 80°, 90° degrees Energetic threshold ~ 100 keV

Beam identification and tracking detectors Before and after the target

Calorimeter Telescope for beam identification CATE Position sensitive

4 CsI 9 Si

Structure @ 10.5 MeV in <u>all</u> detectors

ANALYSIS and final **RESULTS**

Background ??

2. Evaluation of Background

Statistical model (Cascade) calculation of γ-rays following statistical equilibration of excited **target** nuclei (¹⁹⁷Au) and of the excited **beam** nuclei (⁶⁸Ni) folded with RF and in the CM system [see f.ex. J.Ritman et al. PRL70(1993)533]

3. Data Analysis

Calculate the ground state γ-ray decay from a GR state following a Coulomb excitation

! Coulomb excitation probability is directly proportional to the Photonuclear cross section

[Eisenberg, Greiner, Bertulani, Alder, Winther, ...]

Coulomb excitation Yield is product of <u>3 terms</u>: Virtual photo number, photoabsorption cross section, Branching

$$\frac{d^2 \sigma_{C\gamma}}{d\Omega dE_{\gamma}} (E_{\gamma}) = \frac{1}{E_{\gamma}} \frac{dn_{\gamma}}{d\Omega} (E_{\gamma}) \sigma_{\gamma} (E_{\gamma}) R_{\gamma} (E_{\gamma}).$$

[... Beene, Bortignon, Bertulani ...]

 $\frac{d^2 \sigma_{C\gamma}}{d\Omega dE_{\gamma}} (E_{\gamma}) = \frac{1}{E_{\gamma}} \frac{dn_{\gamma}}{d\Omega} (E_{\gamma})$ (E_{γ}) σ_{γ}

Photo absorption cross section

the Thomas-Reiche-Kuhn sum rule for E1 excitations,

$$\int \sigma_{\gamma}^{E1}(\epsilon) \, d\epsilon \simeq 60 \frac{NZ}{A} \, \mathrm{MeV \, mb}$$

 dn_{γ} $\frac{d^2 \sigma_{C\gamma}}{d\Omega dE_{\gamma}}$ (E_{γ}) $\sigma_{\gamma} (E_{\gamma}) R_{\gamma} (E_{\gamma}).$ $d\Omega$

The functions $n_{\pi\lambda}(\varepsilon)$ are called the *virtual photon numbers*, and are given by

$$n_{E1}(b,\varepsilon) = \frac{Z_1^2 \alpha}{\pi^2} \frac{\xi^2}{b^2} \left(\frac{c}{v}\right)^2 \left\{ K_1^2 + \frac{1}{\gamma^2} K_0^2 \right\}$$

= number of equivalent photons

Does NOT depend on the nuclear structure !

Equivalent(virtual)-photon method *Flux of virtual photons per unit area impinging on collision partners.*

$$\frac{d^{2}\sigma_{C\gamma}}{d\Omega dE_{\gamma}} (E_{\gamma}) = \frac{1}{E_{\gamma}} \frac{dn_{\gamma}}{d\Omega} (E_{\gamma}) \sigma_{\gamma} (E_{\gamma}) R_{\gamma} (E_{\gamma}),$$
Branching Ratio_γ
Two-stage approximation of single sharp states,
considering the direct GR decay + the compound states :

$$\mathbf{R}_{\gamma}(\mathbf{E}_{\gamma}, \rho_{\mathrm{LD}}) = \frac{\Gamma_{0}^{\mathrm{GR}}}{\Gamma^{\mathrm{GR}}} + \frac{\Gamma^{\mathrm{GR1}}}{\Gamma^{\mathrm{GR}}} \sum_{\substack{c \in \Gamma_{0}^{\mathrm{GR}} \\ \Gamma^{\mathrm{GR}}}} \sum_{\substack{c \in \Gamma_{0}^{\mathrm{GR}} \\$$

Folded with the **detector response function** to compare to measured data points •:

Folded with the **detector response function** to compare to measured data points •:

> Measured high energy γ -rays from Coulex of ⁶⁸Ni at 600 MeV/u

First experiment of this type ever performed (GSI is the only possible Laboratory)

>We have measured with 3 different detectors a structure around 11 MeV

➢We found an extra strenght at 11 MeV with around 5% to 10 % of the EWSR. The error is related by the assumption of the Level density. The theory (RMF and RRPA calculations) predicts 4-8%.

➢ The results open new perspectives for other experiments and are very promising for Future measurements especially with high resolution

Thank you

A. Bracco^a, G. Benzoni^a, N. Blasi^a, S. Brambilla^a, F. Camera^a F.C.L. Crespi^a, S. Leoni^a, B. Million^a, R.Nicolini^a O. Wieland^a, A. Maj^b, P. Bednarczyk^{b,c} J. Grebosz^b, M. Kmiecik^b, W. Meczvński^b, J. Stvczeń^b T. Aumann^c, A. Banu^c, T. Beck^c, F. Becker^c, L. Caceres^c P. Doornenbal^c, H. Emling^c, J. Gerl^c, H. Geissel^c, M. Gorska^c O. Kavatsyuk^c, M. Kavatsyuk^c, I. Kojouharov^c, N. Kurz^c R. Lozeva^c, N. Saito^c, T. Saito^c, H. Schaffner^c H.J. Wollersheim^c, J. Jolie^d, P. Reiter^d, N. Warr^d G. de Angelis^e, A. Gadea^e, D. Napoli^e, S. Lenzi^f, S. Lunardi^f D. Balabanski^g, G. Lo Bianco^g, C. Petrache^g, A. Saltarelli^g M. Castoldi^h, A. Zucchiatti^h, J. Walkerⁱ, A. Bürger^j and the FRS Collaboration ^aUniversity of Milan and INFN Section of Milan, Italy ^bInstitute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland ^cGSI, Planckstrasse 1, 64291, Darmstadt, Germany ^dUniversity of Koeln, Germany ^eNational Laboratory of Legnaro, INFN, Italy ^fUniversity of Padova and INFN Section of Padova, Italy ^gUniversity of Camerino, and INFN Section of Perugia, Italy ^hINFN Section of Genova, Italy ⁱUniversity of Surrey, United Kingdom ^jHISKP, University of Bonn, Nußallee 14–16, 53115 Bonn, Germany

EGP-Workshop European Gammapool Workshop - Paris, May 27th-30th 2008

