Spectroscopic Studies of Neutron-Rich Nuclei with the CLARA-PRISMA Setup

E.Farnea

INFN Sezione di Padova on behalf of the CLARA-PRISMA Collaboration

1) Gamma Spectroscopy with Multinucleon Transfer and Deep-Inelastic Reactions

2) PRISMA and CLARA

3)Results from the experimental campaign

Grazing reactions as a tool to study n-rich nuclei

Multinucleon transfer and deep inelastic reactions between stable nuclei at low and intermediate energy provide a convenient way to populate many nuclei far from stability which would be impossible to reach with fusion-evaporation reactions.

PRISMA Exp. Data Inelastic channels only (γs detected with CLARA)

50

Neutron Number

Mn

Cr

70

60

asthe

40

1. i.M.

30

100

20

Fission of ²³⁸U

G.de Angelis, G.Duchêne Analysis: N.Mărginean

Grazing reactions as a tool to study n-rich nuclei

Multinucleon transfer and deep inelastic reactions between stable nuclei at low and intermediate energy provide a convenient way to populate many nuclei far from stability which would be impossible to reach with fusion-evaporation reactions. In many cases, the production cross sections are not negligible.

$\gamma\text{-}Ray$ Spectroscopy with Grazing reactions

Experimental approach

- Identification possible only when the "starting" transitions are known or when the cross-coincidences are available.
- Only gamma rays from states with cumulative halflife ≥1 ps visible.

See e.g. Broda et al, PRL **74** (1995) 865

- detection of fast γ transitions
- (A,Z) identification and Doppler correction needed isotopic assignment of γ transitions

Thick target

γ -Ray Spectroscopy with Grazing reactions

JI

4

The CLARA-PRISMA setup

Laboratori Nazionali di Legnaro (INFN), Italy

The PRISMA Magnetic Spectrometer

Trajectories reconstructed through iterative procedure depending only on ratio of fields in dipole and quadrupole and providing trajectory length and curvature radius

Full Z, A selection

Vector velocity of recoils (direction from start detector, β from TOF and trajectory length)

CLARA: Clover Detector array

Up to 25 Euroball Clover detectors (from the EU GammaPool) For Eγ= 1.3MeV: Efficiency ~ 3 % Peak/Total ~ 45 % FWHM < 10 keV (at v/c = 10 %)

The CLARA-PRISMA collaboration

•France

IPHC (IReS) Strasbourg GANIL Caen

•U.K.

University of Manchester Daresbury Laboratory University of Surrey University of Paisley

•Germany HMI Berlin GSI Darmstadt

Poland
IFJ-PAN Kraków

•Croatia

Ruder Boskovic Institute, Zagreb

•Italy

INFN LNL-Legnaro INFN and University Padova INFN and University Milano INFN and University Genova INFN and University Torino INFN and University Napoli INFN and University Firenze University of Camerino

•Spain

University of Salamanca

•Romania

Horia Hulubei NIPNE Bucharest

Summary of the campaign

- 24 experiments (2004-2008)
- 16 papers (so far)
- Over 40 presentations at international conferences/workshops
- 6 theses (diploma, PhD, ...)

Qualitative Difference Near the Neutron-Dripline

Orbital migrations

Proton-neutron spin-flip interaction

T. Otsuka et al., PRL87, 082502 (2001)

T. Otsuka et al., PRL 95, 232502 (2005)

From N=20 to N=28

R.Chapman, X.Liang (Manchester), M.Stanoiu, F.Azaiez (IPN Orsay)

Effect of the occupancy of the v1f_{7/2} orbital on the $\pi d_{3/2}$ and $\pi s_{1/2}$ single particle energy separation.

"Pseudo-SU(3)" symmetry and quadrupole deformation in n-rich S (N=24,26) isotopes

Double gated ³⁶Si spectrum from data obtained in thick target 230MeV ³⁶S + ²⁰⁸Pb experiment

J. Ollier, PhD thesis University of Paisley (2004) unpublished

X. Liang et al., Phys. Rev. C 74, 014311 (2006) E. Caurier et al., Rev. Mod. Phys. 77, 427 (2005)

<u>Strasbourg shell-model calculation</u>

modified SDPF-NR interaction

 π sd-shell

v fp-shell

pf shell pairing reduced by 200keV to reproduce E₂₊

2p_{3/2} orbital energy decreased by 1MeV, otherwise higher spin levels too compressed.

Deep-inelastic reaction products around ⁴⁸Ca previously studied in thick target experiment

B.Fornal, R.Broda

Sample mass spectra

Shell closures and collectivity in n-Rich A≈50-60 Nuclei

Possible shell closures at N=32 and N=34 Onset of collective behaviour in heavier isotopes

•

•

S.M.Lenzi, S.Lunardi

Shell closures and collectivity in n-Rich A≈50-60 Nuclei

Systematics of the 2⁺ energy in the Ca and Ti even-even isotopes suggests that N=32 might be a good (sub)shell closure. The same systematics for the Cr isotopes points to quite a collective behaviour for the heavier isotopes.

This trend is well reproduced by shell-model calculations in a *pf* space

Shell closures and collectivity in n-Rich A≈50-60 Nuclei

Transition probability data from RISING and MSU are consistent with a sub-shell closure at N=32. The spectroscopic information for the heavy Cr isotopes, prior to this measurement, was mostly limited to the energy of the first 2⁺ state, identified from β-decay experiments.

Spectroscopy around the N=32 shell closure

53

N=30

55 J

N=32

⁵⁷V

N=34 endelse de sa sa sila ferra a elle

2000

2200

1600

1800

V isotopes

D.R. Napoli et al., Jour. of Phys. Conf. 5. 49, 91 (2006)

Shell closure at N=32

• First experimental observation of the $1\pi f_{7/2}$ band in $^{55,57}V$

Shell closure at N=32

- First experimental observation of the $1\pi f_{7/2}$ band in $^{55,57}V$
- The shell closure predicted at N=34 in some calculations is not confirmed by experimental data

Beyond N=40

⁷⁰Zn on ²³⁸U at 460 MeV

S.M. Lenzi et al., LNL Annual Report 2007 and to be published

Shell model calculations for Fe nuclei

Comparison with shell model

The experimental level schemes seem to be more quadrupolecollective than the calculated ones.

This quadrupole collectivity can be produced by including the $d_{5/2}$ shell in the model space (pseudo-SU(3), see A.P.Zuker et al., PRC, 2005)

48Ca+64Ni @ 300 MeV

S.Leoni et al.

(γ, γ') experiments on stable Ca isotopes

T. Hartmann PRL85(2000)274

⁴⁸Ca+⁶⁴Ni @ 300 MeV

<u>Cross section calculation</u> <u>GRAZING code (Pollarolo et al.)</u>

the nuclei of interest (48Ca) should have sufficient internal energy to populate highly excited/pygmy states

Work in progress: Calibration & add-back of BGO's to improve statistics of high-energy γ 's

In-beam γ spectroscopy using DIC with **stable** and **radioactive** Ne beams

²⁴Ne+²⁰⁸Pb @ 190 MeV Vamos+EXOGAM

²²Ne+²⁰⁸Pb @ 300 MeV CLARA - PRISMA

<u>Comparative study</u>:

- γ-spectroscopy
- cross sections

G.Benzoni et al.

Differential RDDS Measurements with CLARA-PRISMA

Basic idea: use the "wrong" value to perform Doppler correction → differential plunger (target+degrader)

The DANTE MCP Array

Detector Array for multi Nucleon Transfer Ejectiles

DANTE is a highly efficient array of position-sensitive MCP detectors, developed in collaboration with FLNR Dubna. It can be used in different configurations depending on the grazing angle of the reaction.

Performance of DANTE

Energy resolution 1.2%

Problems with fission background! Need kinematical coincidences to clean up data and access weaker channels

- Valuable information on moderately n-rich nuclei has been collected using multinucleon transfer and deep inelastic collisions with stable beams at the CLARA - PRISMA setup
- The analysis of the most recent experiments is still in progress, so we expect interesting results to be shown at the next Gammapool workshop!

- To the colleagues who enjoyed beam times in Legnaro
- To the colleagues who took hard effort in analysing data
- To the colleagues who made my life easier providing excellent slides
- To the colleagues who took hard effort in keeping CLARA and PRISMA working properly
- To the GammaPool and to the UE (under contract RII3-CT-2004-506065)
- To all of you for your attention!