Introduction	Experiment	Results	Summary	Conclusion	Appendix
000	000000	000000000000000000000000000000000000000	000		

Lifetime measurements of neutron-rich nuclei around the doubly-magic ⁴⁸Ca, using multi-nucleon transfer reactions

D. Mengoni

Università e Sezione INFN di Padova, Italy.

European Gammapool Workshop, Paris May 27th÷30th, 2008

000	000000	000000000	000000	
- · · ·				

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

500 э

Outline

2 Experiment

- Apparatus
- Method

Results

- N=30 isotopes: ⁵⁰Ca, ⁵¹Sc
- Preliminary ⁴⁶Ar

Conclusion

Introduction •oo	Experiment	Results	Summary	Conclusion	Appendix
Motivatior	h				

◆ロ▶ ◆母▶ ◆ヨ▶ ◆母▼ ● ●

Introduction	Experiment	Results	Summary	Conclusion	Appendix
000	0000000	000000000000000000000000000000000000000	000		

Shell evolution migration of single particle orbitals

T. Otsuka et al., Phys. Lett. 95 (2005) 232502, B. Fornal contrib. to AGATA-WEEK 2007.

500

Introduction	Experiment	Results	Summary	Conclusion	Appendix
000	0000000	000000000000000000000000000000000000000	000		

Motivation

Introduction	Experiment ●○○○○○○	Results	Summary	Conclusion	Appendix
Goals					

Need for lifetime measurements

Complete spectroscopic information, constraint nuclear model in this region, nuclear structure evolution.

roduction	Experiment	Results	Summary	Conclusion	Appendix
00	000000	000000000	000000		

Around the doubly-magic nucleus ⁴⁸Ca

V47	V48	V49	V50	V51	V52	V53	V54	V55
3/2-	4+	7/2-	6+	7/2-	3+	7/2-	3+	(7/2-)
EC	EC		EC,β· 0.250	99.750	β·	β-	β-	β-
Ti46	Ti47	Ti48	Ti49	Ti50	Ti51	T152	T153	Ti54
0+	5/2-	0+	7/2-	0+	3/2-	0+	(3/2)-	0+
8.0	7.3	73.8	5.5	5.4	β-	β·	β-	
Sc45	Sc46	Sc47	Sc48	Sc49	Sc50	Sc51	Sc52	Sc53
7/2-	4+	7/2-	6+	7/2-	5+	(7/2)-	3+	
100	β.	3-	β-	ß-	β-	β- 🔴	β-	
Ca44	Ca45	Ca46	Ca47	Ca48	Ca49	Ca50	Ca51	Ca52
0+	7/2-	0+	7/2-	0+	3/2-	0+	(3/2-)	0+
2.086	β·	0.004	β	β-β-β- 6.187		β. 🔴	βm	β [.]
K43	K44	K45	K46	K47	K48	K49	K50	K51
3/2+	22.15 m 2-	3/2+	(2-)	1/.50 \$	(2-)	(3/2+)	(0-,1,2-)	(1/2+,3/2+)
β-	β-	3-	β	β-	βn	βn	βn	βm
Ar42	Ar43	Ar44	Ar45	Ar46	Ar47	Ar48	Ar49	Ar50
0+	(3/2,5/2)	0+	21.40 5	0+	700 IIIS	0+		0+
β-	β-	3-	B	<u>в</u> - 📕	ßm 📕			
C141	C142	C143	Cl44	C145	C146	Cl47	C148	C149
(1/2,3/2)+	0.8 \$	5.55	434 ms	400 ms	223 ms			
β-	ß	β	βn	βn	βn	βn		

Region

- Evolution of nuclear structure along isotopic chains through BE2s.
- Extension of the knowledge towards nuclei with larger isospin values.
- Subshell closure N=32 (Z=20).
- Persistence of N=28: ⁴⁶Ar, ⁴⁴S,
 ⁴²Si.

• □ > • □ > • □ > • □ > • □ >

Sac

Introduction	Experiment	Results	Summary	Conclusion	Appendix
Experim Details	nent				

Details

- beam: ⁴⁸Ca @ 310 MeV provided by TANDEM ALPI (~1.5 pnA current) accelerator complex;
- *target*: 1 mg/cm² stretched ²⁰⁸Pb (1 mg/cm² Ta backing);
- degrader: 4 mg/cm² ^{nat}Mg;
- PRISMA(49° grazing angle)+CLARA.
- Distances: 30 μ m, 100 μ m, 300 μ m, 1240 μ m, 220 μ m

< ロ > < 同 > < 回 > < 回 >

8-days beam-time

duction	Experiment	Results	Summary	Conclusion	ŀ
	000000	000000000000000000000000000000000000000	000		

CLARA-PRISMA set-up

CLARA: 25 Euroball clovers

- Efficiency \sim 3% (E $_{\gamma}$ 1.3 MeV) \rightarrow 1%
- P/T $\sim 45\%$
- FWHM \sim 10 keV (v/c=10%) \rightarrow 6 keV

A. Gadea et al., Eur. Phys. J. A20 (2004) 193.

PRISMA: magnetic spectrometer

- Solid angle \sim 80 msr
- Mom. acceptance \pm 10%
- Maximum rigidity1.2 Tm
- Energy resolution 1/1000
- Mass resolution 1/300 FWHM

< ロ > < 同 > < 回 > < 回 >

200

A.M. Stefanini et al., Nucl. Phys. A701 (2002) 109c.

Introduction 000 Experiment

Results Su

nary

Conclusion

Appendix

500

RDDS-target plunger set-up

Remarks

- Ring stack to set distances
- (stretched) Target: Ta 1 mg/cm², ²⁰⁸Pb 1 mg/cm²
- (stretched) Degrader:
 nat Mg 4 mg/cm²
- Self-made plunger assemblying
- Cooling system for beam current increase

< ロ > < 同 > < 回 > < 回 >

Introduction	Experiment	Results	Summary	Conclusion	Appendix
000	0000000	000000000	000000		

Working principle

J.J. Valiente, D. Mengoni et al., LNL An.Rep. 2007.

INFN

500

(日)

Introduction	Experiment	Results	Summary	Conclusion	Appendix
000	000000	00000000000000	000		

Differential plunger method

 τ = 5.24±0.54 ps. M. Bini et al., Nuovo Cimento Lett. 5 913 (1972).

INFN vac

・ ロ ト ・ 同 ト ・ 回 ト ・

ъ

Introduction	Experiment	Results	Summary	Conclusion	Appendix
000	0000000	•00000000	000000		

⁵⁰Ca isotope Spectroscopic information

- Yrast structure N=30 isotones.
- Shell-model calculations only consider excitations involving neutron orbitals; proton core excitations possibly need to be included.
- Indication for N=32 subshell closure from the E(4+)/E(2+) energy ratio.

NFN

20

R. Broda et al., Acta Phys. Pol. B36 (2005) 1343.

Introduction	Experiment	Results	Summary	Conclusion	Appendix
000	0000000	000000000000000000000000000000000000000	000		

Differential plunger method

Peak ratio
$I_{\rm s}=N_0(1-{\rm e}^{(-\frac{d}{v}\frac{1}{\tau})})$
$I_u = N_0 e^{-\frac{d}{v} \frac{1}{\tau}}$
$ln\left(\frac{I_u}{I_u+I_c}\right) = -\frac{d}{v}\frac{1}{\tau}$
(u + is)

D. Mengoni, J.J. Valiente et al., LNL An. Rep. 2007.

・ ロ ト ・ 同 ト ・ 回 ト ・

ъ

500

v is the velocity before the degrader, while PRISMA measures the one after the degrader!

Introduction 000	Experiment	Results ○○●○○○○○○○	Summary 000000	Conclusion	Appendix
Method					

$$\frac{E_{\gamma} + E_{\gamma'}}{E_{\gamma'}} = (\beta - \beta') cos \vartheta, \vartheta \rightarrow CLARA, \beta' \rightarrow PRISMA$$

Introduction	Experiment	Results	Summary	Conclusion	Appendix
000	000000	000000000000000000000000000000000000000	000		

⁵⁰Ca reduced transition probability

With various gate on TKEL: (96±3) ps lifetime \rightarrow (7.5±0.2) e²fm⁴ B(E2)

Large shell model calculation

- Full fp shell calculations, using ⁴⁰Ca as inert core.
- KB3G(M), GXPF1A(M) effective interactions.
- Two set of effective charges: isoscalar (1.5, 0.5), dR (1.15, 0.8)

	E_{γ} (keV)	$B(E2,2^+ \rightarrow 0^+)$ (e ² fm ⁴)	E_{γ} (keV)	$B(E2, 11/2^- \rightarrow 7/2^-)$ (e ² fm ⁴)	
Exp. KP2C (ct)	1026	7.5(2)	1062	18(4)	
KB3G (dR)	1000	20.35	1141	32.24	
GXPF1A (st)	1187	8.10	1136	18.21	IFN

Introduction	Experiment	Results	Summary	Conclusion	Appendix
000	000000	000000000000000000000000000000000000000	000		

Beyond mean-field simmetry restoration

simmetry-conserving theory provided by projection technique:

angular momentum

INFN

900

particle number

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Applied to heavy nuclei, additional residual interaction required for lighter nuclei

no effective charge, good agreement with experimental data (trend)

T. Rodriguez, J.L. Egido Phys. Rev. Lett. 99, 062501 (2007).

Introduction	Experiment	Results	Summary	Conclusion	Appendix
000	0000000	000000000000000000000000000000000000000	0000		

⁵¹Sc isotope Spectroscopic information

- Yrast structure N=30 isotones.
- Shell model calculations are restricted to the coupling of f_{7/2} proton with neutron excitations.

(日)

500

R. Broda et al., Acta Phys. Pol. B36 (2005) 1343.

Introduction	Experiment	Results ○○○○○○●○○	Summary 000000	Conclusion	Appendix
Method					

- Iow Q_{val} gate
- lifetime: 34±7 ps

Image: A mathematical states and a mathem

● B(E2↓): 18±4 e²fm⁴

ъ

500

.

Introduction	Experiment	Results	Summary	Conclusion	Appendix
000	000000	000000000000000000000000000000000000000	000		

fp shell effective charge the polarization charge

The E2-polarization effect gives rise to an effective charge associated with the quadrupole processes:

$$(\boldsymbol{e}_{eff})_{E2} = \boldsymbol{e}(\frac{1}{2} - \tau_z) + (\boldsymbol{e}_{pol})_{E2},$$

$$e_{pol} = (e_{pol})_{IS} + (e_{pol})_{IV}$$

(日)

$$\pi \qquad \qquad \nu \\ (e_{eff})_{E2} = e + (e_{pol})_{E2} \qquad \qquad \nu \\ (e_{eff})_{E2} = (e_{pol})_{E2}$$

The core polarization can be understood in terms of the coupling between the particle and the collective oscillations associated with deformations of the core.

Introduction	Experiment	Results	Summary 000000	Conclusion	Appendix
Effective	charge				

Lifetimes of the 2+ in ⁵⁰Ca and 11/2- ⁵¹Sc will help to determine the effective charges in the fp shell.

- ⁵⁰Ca wave function of the 2+ $\rightarrow (\nu p 3/2)^2$
- ⁵¹Sc wave function of the 11/2- \rightarrow (ν p3/2)², π f7/2

Incomplete (t=5) LS shell model calculation have been performed to reproduce lifetime in ⁵⁸Ni and Ti staggering.

• □ > • □ > • □ > • □ > • □ >

Introduction	Experiment	Results	Summary 000000	Conclusion	Appendix
Effective	charge				

A. Poves et al., Phys. Rev. C 72, 047302 (2005).

 For N=Z e_{eff}(π)=1.15, e_{eff}(ν)=0.8

 A new computation of the effective charges is required for neutron-rich nuclei.

500

• 50 Ca e_{π}=1.08 and e_{ν}=0.569 can be deduced.

(日)

Introduction	Experiment	Results	Summary	Conclusion	Appendix
000	0000000	00000000	00000		
16 .					

⁴⁶Ar isotope spectroscopic information

- Intermediate Coulomb energy determination of B(E2:2⁺ \rightarrow 0⁺).
- Deformation occurs near N=28 but the major shell gap persists in the slightly oblate vibrational nucleus ⁴⁶Ar.

Sac

A. Gade *et al.*, Phys. Rev. C68 (2003) 014302.
H. Scheit *et al.*, Phys. Rev. Lett 77 (1996) 3967.
Zs. Dombrádi *et al.*, Nucl. Phys. A727 (2003) 195.

Introduction	Experiment	Results	Summary	Conclusion	Appendix
000	0000000	000000000	000000		

Differential plunger method

- fully shifted peak ⇒ short lifetime
- increased emission in the degrader ⇒ peak broadening
- (preliminary) upper limit in the lifetime

(日)

500

ntroduction	Experiment	Results	Summary	Conclusion	Appendix
000	0000000	00000000000000	00		

N=28 major shell gap possible deformation of ⁴⁶Ar?

Relativistic Coulomb Excitation:

B(E2) trantistion probability through disentanglement of the Coulomb cross section

$0^{\circ} - \theta_{lab}^{max}$		$0^\circ - 1.9^\circ$	$0^{\circ} - 2.2^{\circ}$	$0^{\circ} - 2.5^{\circ}$	$0^{\circ} - 2.7^{\circ}$	0°-2.9°
$E(^{46}\text{Ar})$ midtarget (MeV/nucleon)	73.2					
⁴⁶ Ar beam purity (%)	≥99					
Target ¹⁹⁷ Au (mg/cm ²)	209					
Typical intensity on target (kHz)	13					
Total run time (h)	≈ 9					
Integrated cross section σ (mb)		32(5)	43(6)	53(7)	60(8)	68(8)
b_{\min} (fm)		18.8	16.2	14.3	13.2	12.3
$R_{\rm int}$ (fm)	13.3					
$B(E2;0_1^+ \rightarrow 2_1^+)(e^2 \text{ fm}^4)$		$226(43)^{a}$	227(39)	220(35)	218(31)	212(30)
Adopted $B(E2\uparrow)(e^2 \text{ fm}^4)$	218(31)					
$B(E2\uparrow)(e^2 \text{ fm}^4)$ from Ref. [8]	196(39)					

 $\overline{{}^{\mathrm{a}}B(E2)}$ at $b_{\mathrm{min}} = R_{\mathrm{int}}$.

H. Scheit et al., Phys. Rev. Lett 77 (1996) 3967.

INFN

 Introduction
 Experiment
 Results
 Summary
 Conclusion
 Appendix

 N=28 major shell gap

possible deformation of ⁴⁶Ar?

- non-zero deformation of ⁴⁶Ar
- the nuclues might be as deformed as ⁴⁴Ar
- shell model calculation (empirical interaction) predicts this trend!

H. Scheit et al., Phys. Rev. Lett 77 (1996) 3967.

< ロ > < 同 > < 回 > < 回 >

Sac

Introduction	Experiment	Results	Summary	Conclusion	Appendix
000	0000000	000000000	00000		
O 1 1 1					

Simulations realistic CLARA-PRISMA simulation

- Event generator: vel distribution deduced from the exp, stopping power in the degrader
- Full Prisma reconstruction
- Geant4 Clara simulation (comparison with AGATA follows soon in Andres talk)
- Iifetime 105±6 ps

• □ > • □ > • □ > • □ > • □ >

Sac

Introduction	Experiment	Results	Summary	Conclusion	Appendix
Summary					

- Lifetime measurement performed via MNT and RDDS method, using CLARA gamma spectrometer coupled with PRISMA magnetic spectrometer.
- Preliminary results (experiment performed in december 2007) on the lifetime of the first excited states in the N=30 isotones ⁵⁰Ca and ⁵¹Sc. This allows to determine the effective charges of the fp shell.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

• Simulation in progress for ⁴⁶Ar (N=28).

oduction Experiment Results Summary **Conclusion** Append

Outlook and Conclusions

- Novel method for lifetime measurement in neutron-rich nuclei available.
- Feeding control through TKEL gate.
- Future at LNL: The AGATA demostrator coupled to PRISMA and the plunger from Cologne will open new possibilities due to its much higher efficiency (almost ten times CLARA for lifetime measurement).
- Lol to study ⁵²Ca with the AD + PRISMA + Köln Plunger

• □ > • □ > • □ > • □ > • □ >

Introduction	Experiment 0000000	Results	Summary	Conclusion	Appendix
1201					

Köln plunger

Introduction	Experiment	Results	Summary	Conclusion	Appendix
000	0000000	000000000	000000		

Collaborators

D. Mengoni,¹ J.J. Valiente-Dobón,² A. Gadea,² E. Farnea,¹ S.M. Lenzi,³ S. Lunardi,³ A. Dewald,⁴ T. Pissulla,⁴ S. Szilner,⁵ L. Angus,⁶ D. Bazzacco,¹ G. Benzoni,⁷ P.G. Bizzeti,⁸ A.M. Bizzeti-Sona,⁸ P. Boutachkov,⁹ R. Broda,¹⁰ L. Corradi,² F. Crespi,⁷ G. de Angelis,² E. Fioretto,² A. Goergen,¹¹ M. Gorska,⁹ A. Gottardo,¹² E. Grodner,² A. Howard,¹³ W. Królas,¹⁰ S. Leoni,¹⁴ P. Mason,² D. Montanari,⁷ G. Montagnoli,¹ D.R. Napoli,² A. Obertelli,¹⁵ T. Pawłat,¹⁰ F. Recchia,² A. Algora,^{16,17} B. Rubio,¹⁶ E. Sahin,² F. Scarlassara,³ J.F. Smith,⁶ A.M. Stefanini,² D. Steppenbeck,¹³ C.A. Ur,¹ P.T. Wady,⁶ and J. Wrzesiński¹⁰ ¹Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova, Italy ²Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Legnaro, Italy ³Dipartimento di fisica dell'Universitá and INFN sezione di Padova, Padova, Italy ⁴Institut für Kernphysik der Universtät zu Köln, Köln, Germany ⁵Ruđer Bošković Institute, Zaoreb, Croatia ⁶School of Engineering and Science, University of Paisley, Paisley, Scotland, U.K. ⁷Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano, Italy ⁸Dipartimento di Fisica dell' Universitá and INFN sezione di Firenze, Firenze, Italy ⁹Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany ¹⁰Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland ¹¹CEA Saclay, Daphnia/SphN, F-91191 Gif-sur-Yvette Cedex, France ¹²University of Edinburgh, Edinburgh, U.K. ¹³Schuster Laboratory, University of Manchester, Manchester, U.K. ¹⁴Dipartimento di Fisica dell' Universitá and INFN sezione di Milano, Milano, Italy ¹⁵CEA Saclay, Daphnia/SphN, Gif-sur-Yvette Cedex, France ¹⁶Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Spain ¹⁷Institute of Nuclear Research of the Hungarian Academy of Sciences, Pf. 51, Debrecen 4001, Hungary

(日)

⁴⁸Ca(330 MeV)+²³⁸U: mass distribution

Inclastic	o obonnol f	ooding			
000	0000000	000000000	000000		
Introduction	Experiment	Results	Summary	Conclusion	Appendix

▲ロト ▲圖ト ▲注ト ▲注)

Introduction	Experiment	Results	Summary	Conclusion	Appendix
000	0000000	000000000000000000000000000000000000000	000		

Production rates

Isotopes production rates (counts/day) obtained from a previous ${}^{48}Ca + {}^{238}U$ at 330 MeV experiment with CLARA-PRISMA, with an average ${}^{48}Ca$ beam intensity of 0.5 pnA, by Broda and collaborators.

	1	Mass								
	45	46	47	48	49	50	51	52		
Sc	-	-	-	-	-	-	1.2×10^4	1.4×10 ³		
Ca	-	-	-	-	-	5.3×10^{4}	-	-		
К	1.9×10^{4}	4.0×10^{4}	7.9×10^{4}	1.8×10^{4}	2.7×10^{3}	-	-	-		
Ar	1.2×10^{4}	8.6×10 ³	2.2×10 ³	-	-	-	-	-		

Introduction	Experiment	Results	Summary	Conclusion	Appendix
000	0000000	000000000000000000000000000000000000000	000		

Known spectroscopic information

Thick target (80 mg/cm²) DIHIR gamma coincidences:

- GASP ⁴⁸Ca(210 MeV) + ⁴⁸Ca Low fold gates for fusion
- GAMMASPHERE ⁴⁸Ca(245 MeV) + ²⁰⁸Pb
- GAMMASPHERE ⁴⁸Ca(330 MeV) + ²³⁸U

R. Broda., J. Phys. G: Nucl. Part. Phys. 32 (2006) R151.

MNT-DIHIR experiment:

PRISMA-CLARA ⁴⁸Ca(330 MeV) + ²³⁸U

・ロット 小型マン キロマ

How we plan to proceed

- Based on the production rate for the various nuclides for Broda experiment),
- $\bullet\,$ Beam current: \sim 1 pnA to avoid the target to melt
- at least 100 counts in the photopeak transition
- $\bullet \sim$ 3 days/distance are estimated considering the lowest populated nucleus ($^{47}\text{Ar}),$
- thin (300 μ g/cm²) target to check PRISMA set-up.
- 3 distances from 30 ÷ 300 μm to cover the 1÷10 ps time range: 300 μm then analisys.

• □ > • □ > • □ > • □ > • □ >

• 3 ps lifetime of ⁴⁶Ca will be firstly checked.