Advanced GAmma Tracking Array

Performance of an AGATA prototype detector estimated by Compton-imaging techniques

F. Recchia, <u>G. Suliman</u>, S. Aydin, D. Bazzacco, E. Farnea, C.A. Ur, R. Venturelli

Outline

The AGATA spectrometer

Performance estimate from in-beam experiment

Results

Comparison to Monte Carlo simulation

- Performance estimate from off-line experiment
 - Imaging Principle
 - Measurements and results
- Conclusions

Ingredients of *γ*-ray tracking

The γ -ray spectrometer AGATA

Design values: 5 mm of position resolution assumed			
Efficiency: 43% (Μ _γ = today's arrays ~10%	=1) 28% (Μ _γ =30) 5%		
Peak/Total: 58% (Μ _γ = today ~55%	=1) 49% (Μ _γ =30) 40%		
Angular Resolution: ~1°			
FWHM (1 MeV, v/c=5	0%) ∼ 6 keV ~40 keV		

- 180 large volume 36-fold segmented Ge crystals packed in 60 triple-clusters
- Digital electronics and sophisticated Pulse Shape Analysis algorithms
- Operation of Ge detectors in position sensitive mode for γ-ray tracking

The position resolution required for the AGATA detectors

Simulations suggest that the overall performance depends on the attainable **position resolution**

A **test-beam experiment** has been performed to measure this parameter in realistic experimental conditions

Doppler broadening

Setup of the in-beam experiment

Symmetric triple cluster

d(⁴⁸ Ti, ⁴⁹ Ti)p		
BEAM	⁴⁸ Ti	100 MeV
TARGET	⁴⁸ Ti + ² H	220 µg/cm²
Si detector DSSSD	Thickness: 300 µm	
	32 rings, 64 sectors	
AGATA symmetric triple-cluster		

Silicon detector

Doppler correction using PSA results

Doppler correction using PSA results

Doppler correction using PSA results

Position resolution

- A GEANT4 simulation for the AGATA and other ancillary detectors
- A Monte Carlo event generator based on cascade and GammaWare
- SRIM calculations to estimate target thickness impact

Simulation vs Experiment

Performance estimate from experiment

- Typical conditions of future use
 DSSD(or other ancillary)
 Beam Time
 Not trivial data analysis:
 - Gating on particles
 - Doppler correction
 - "Simple" physics case that can be simulated

Is there no other simple way?

Compton imaging principle

Compton imaging performance

- Error on Compton identification of source direction from:
- **Position resolution** (axis)
- Energy resolution (scattering angle)
- Compton profile (scattering angle)

Outline of analysis/simulation

Imaging setup at LNL

AGATA prototype detector

TNT2 Digitizers: 4ch 14bit 100MHz

⁶⁰Co source

Comparison to MC simulation

CONCLUSIONS

- Position resolution extracted by in-beam experiment and Compton imaging is 5 mm FWHM.
- This value is in line with the design assumptions of the AGATA spectrometer, confirming the feasibility of γ-ray tracking.
- Imaging can be used as an alternative way to measure AGATA performance
- Possible applications of γ-ray tracking detectors to imaging.

