Study of Neutron-Rich Nuclei Near N = 50

FAUL Tatjana

Institut Pluridisciplinaire Hubert Curien Division Recherche Subatomique Strasbourg

Physics case :

◆ Disappearance of N=20 : ³¹Na₂₀
 et ³²Mg₂₀ → inversion island
 D. Guillemaud-Muller et al. Nucl. Phys. A 426 (1984)

♦ N=28 : ⁴²Si → weakening of the gap
 B. Bastin Phys. Rev. Lett. 99, 022503 (2007)

✤ Appearance of N=40 : ⁶⁸Ni
 M. Bernas et al. Phys. Lett. 113B (1982) 279

♦ New domain of interest → N=50

 $^{20}C_{14}$, ^{32}Mg , $^{42}Si \rightarrow Loss$ magicity

⁷⁸Ni **→** ?

¹³²Sn, ²⁰⁸Pb → magic

Tensor force and shell evolution :

Proton-neutron interaction + tensor interaction

T. Otsuka et al. Phys Rev. Lett. 87 (2001), 082502

Tensor force and shell evolution :

Proton-neutron interaction + tensor interaction

T. Otsuka et al. Phys Rev. Lett. 87 (2001), 082502

Shell-Model calculations :

Antoine code E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, Rev. Mod. Phys. 77, 427 (2005)

✤ Calculation space :

✤ Interaction rg5.45mod

•

Experiments at Legnaro:

DI reactions + Multi-nucleon transfers
 N/Z(²³⁸U)=1.59 & N/Z(⁸²Se)=1.41 & N/Z(¹⁹²Os)=1.53
 10% above the Coulomb barrier

→ ⁸²Se @ 515 MeV + ²³⁸U and θ_{qraz} = 64°

A. Gadea et al. Eur. Phys. J. A 20, 193-197 (2004)

Mass distributions :

Precise identification of quasi-projectiles

- → 25 Ge Clover detectors
- → Efficiency ≈ 3%
- → Peak/Total ratio ≈ 50%
- → FWHM 10 keV @ 1.3 MeV with v/c ≈ 10%

Identified y spectra

GASP → Construction of level schemes

CLARA-PRISMA → Double coincidences → statistics too low

- \rightarrow GASP: 4π ball
- → 40 HP- Ge Phase I detectors
- → BGO calorimeter = multiplicity filter + total energy spectrometer.
- → Absolute photopeak efficiency = 3%
- → BGO efficiency = 70%

⁸²Se @ 460MeV + ¹⁹²Os

Ge isotopic chain \rightarrow ⁷⁸Ge

140-

FAUL Tatjana – EGP workshop – 28 May 2008

Agreement

14/<u>19</u>

Ge & Zn isotopic chains:

T.Faul, G.Duchêne et al. to be published in Phys. Rev. C

 \rightarrow Up to Z = 30, the N = 50 gap shows a resistant character

FAUL Tatjana – EGP workshop – 28 May 2008

Even Ge systematics :

FAUL Tatjana – EGP workshop – 28 May 2008

✤ For even nuclei

 \rightarrow Agreement improved when v g_{9/2} pairing + monopoles modified

CONCLUSIONS

- ✤ Study of the Ge & Zn isotopic chains → clear exp improvements
- ✤ Resistance of the N=50 shell-gap for Ge & Zn.
- Systematic comparison of experimental data with Shell-Model calculations.
- Validation of our results + interaction improvements.

 <u>γ Outlooks</u> : → Necessity of more statistics

 Setups more efficient → AGATA

 LNL: AGATA Demonstrator + PRISMA
 Eff : 6 % @ M_γ = 1

 N=50 nuclei

◆ <u>SM Calculations</u>: → Improvements are necessary....
 → Interaction 1ħω:

 \succ Excitation from $f_{7/2}$ to fp+g_{9/2}

 \succ Excitation from fp+g_{9/2} to gd

