

European Gammapool Workshop Paris, May 27th-30th 2008

On-Line Separator for γ-Spectroscopic Studies

A.G. Popeko,

FLNR, JINR, Dubna, Russia for the GABRIELA Collaboration

Co-authors

FLNR, JINR, Dubna, Russia: V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, A.I. Svirikhin, A.V. Yeremin;

IPN, Orsay, France: A. Lopez-Martens, K. Hauschild;

> IPHC, Strasbourg, France: O. Dorvaux

Advantages of Dubna:

availability of intense ion beams and radioactive targets!

Decay spectroscopy @ the focal plane of the recoil separator Isomer and Decay spectroscopy (running IN2P3-FLNR-project GABRIELA) :

²⁴⁹Cf - target

Advantages of Dubna

Prompt spectroscopy *(a)* **the target position with the RDT technique**

I_{beam} ~ 10-20 pnA

Requirements

- increased yield of asymmetric reaction products:
 - larger acceptances of the separator;
 - larger transmission through the separator;
- > high detection efficiency of decay products (e, α , β , γ , ff);
- > tof measurement (or "coming from outside" mark);
- Shielding of target-position and focal-plane detectors from acelerator and beam dump;
- > shielding of detectors from accelerator and beam dump;
- possibility of investigation of symmetric as well as asymmetric reactions;
- Sufficient space for detectors at the target and focal plane positions.

Requirements for a new separator

<E>~35 MeV

<E>~9 MeV

Transmission & yield of ²⁵²No

Energy distributions for different target thicknesses

 $^{48}Ca + ^{238}U(UF_4) \rightarrow ^{283}112 + 3n$

Angular distributions for different target thicknesses

 $^{48}Ca + ^{238}U(UF_4) \rightarrow ^{283}112 + 3n$

Enrgy acceptance calculations for VASSILISSA

 $^{22}Ne + ^{238}U \longrightarrow ^{255}No + 5n \epsilon = 2\%$

Analyzed reactions 0,5 Xe Reaction asygmetry 🚯 Sn 0 Pd Мо Kr • Zn 0. Fe Ca C 0 0,1 -S Ne 100 300 150 200 250 Mass of the compaund nucleus A_c

$^{22}Ne + ^{238}$	$\mathbf{U} \rightarrow$	²⁶⁰ No*
--------------------	--------------------------	--------------------

Nucl	E(MeV)	Bρ (vac. T·m)	Bρ (He, T·m)	Β ρ (H ₂ . T · m)	V (cm/ns)	E/q _{vac} (MV)
²² Ne	112.4	0.76	0.76	0.76	3.14	11.7
²⁶⁰ No	9.5	0.74	1.82	2.45	0.26	0.99
²³⁸ U	34.8	0.72	1.89	2.01	0.53	1.93
⁴ He	58.5		1.1		5.3	
$^{1}\mathrm{H}_{2}$	18.7			0.62	6.0	

$^{48}Ca + ^{244}Pu \rightarrow ^{292}114*$

Nucl.	E(MeV)	Bρ (vac. T·m)	Вр (Не. Т∙м)	Вρ(H ₂ . Т∙м)	V (cm/ns)	E/q _{vac} (MV)
⁴⁸ Ca	236	0.88	0.94	0.94	3.1	13.0
²⁹² 114	38.8	0.79	2.0	2.18	0.51	2.0
²⁴⁴ Pu	129.7	0.83	1.65	1.49	1.0	4.2
⁴ He	67		1.2		5.7	
¹ H ₂	18.8			0.62	6.02	

86 Kr + 180 Hf $\rightarrow ^{266}$ Hs*

Nucl.	E(MeV)	Bρ (vac. T·m)	Bρ(He. T∙m)	Β ρ (H ₂ . T · m)	V (cm/ns)	E/q _{vac} (MV)
⁸⁶ Kr	400	0.96	1.12	1.12	3.0	14.3
²⁶⁶ Hs	130	0.82	1.60	1.50	0.97	3.95
¹⁸⁰ Hf	350	0.92	1.23	0.92	1.94	8.96
⁴ He	68.0		1.2		5.7	
$^{1}\mathrm{H}_{2}$	18.2			0.6	5.9	

$^{156}\mathrm{Fe} + ^{56}\mathrm{Fe} \longrightarrow ^{112}\mathrm{Te}^*$

Nucl.	E(MeV)	Bρ (vac. T·m)	Bρ(He. T∙m)	Β ρ (H ₂ . T · m)	V (cm/ns)	E/q _{vac} (MV)
⁵⁶ Fe	171	0.68	0.96	0.8	2.41	8.3
¹¹² Te	85.7	0.56	1.2	0.8	1.23	3.5
⁵⁶ Fe	171	0.68	0.96	0.8	2.41	8.3
⁴ He	42.6		0.94		4.5	
$^{1}\mathrm{H}_{2}$	12.1			0.5	4.8	

¹³⁶ Xe +	. 136 Xe	\rightarrow ²⁷² Hs*	
---------------------	-----------------	----------------------------------	--

Nucl.	E(MeV)	Bρ (vac. T·m)	Bρ(He. T∙m)	Β ρ (H ₂ . T · m)	V (cm/ns)	E/q _{vac} (MV)
¹³⁶ Xe	600	1.1	1.38	1.38	3.0	15.7
²⁷² Hs	300	0.95	1.39	1.21	1.46	6.85
¹³⁶ Xe	600	1.1	1.38	1.38	3.0	15.7
⁴ He	66.6		1.2		5.7	
$^{1}\mathrm{H}_{2}$	17.4			0.6	6.0	

Gas-filled separator Advantages:

- \succ presence of a gas H₂, He;
- high energy and charge acceptances;
- additional target cooling through convection;
- Iow number of elements;
- > no high voltage;
- Iow price.

Target gas cooling (infra red snap-shots)

10⁻⁶ mB P=1.3 W T=90-150°C

0.6 mB He P=2.7 BW T=35-150°C

Gas-filled separator Disadvantages:

- ➢ presence of gas − H₂, He;
- > not suitable for very asymmetric reactions;
- not applicable for symmetric reactions;
- very difficult (or impossible) to organize "coming from outside" mark;
- ➤ mast be short (< 5 m) → difficult to organize shielding;</p>
- background from high energetic (15 20 MeV) light particles;

Gas filled separators for asymmetric combinations

Magnetic rigidities of compound nuclei in T*m

Electric rigidities of compound nuclei in MV

Ion optical calculations

- Only first order optics;
- COSY;
- GICOSY;
- VASFIT.

"ASSA" – technical design

Main optical elements of the new separator "ASSA"

2 Magnetic dipoles

2 Electric dipoles

Deflection angle	16 ⁰	Deflection angle	8 ⁰
Radius of curvature	3.1 m	Radius of curvature	3.2 m
Maximum field	0.7 T	Maximum field	40 kV/cm

6 Quadrupole lenses

1 Magnetic dipole

Effective length	0.37 m	Deflection angle	8 ⁰
Bore diameter	0.2 m	Radius of curvature	4.25 m
Maximum field	1.3 T	Maximum field	0.5 T

Thank you for your attention! Many thanks to the organizers!!